Oxygen defects of MgLa-LDH enhancing electrostatic attraction and inner-sphere complexation during phosphate adsorption from wastewater

吸附 氧气 磷酸盐 化学 化学工程 氢氧化物 吸收(声学) 无机化学 材料科学 有机化学 复合材料 工程类
作者
Shuaishuai Li,Junrong Shao,Baiwen Ma,Baile Wu,Chengzhi Hu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:464: 142589-142589 被引量:34
标识
DOI:10.1016/j.cej.2023.142589
摘要

The introduction of oxygen defects toward constructing new binding sites is a promising strategy for improving the adsorption performance of layered double hydroxide (LDH). Here, a facile and novel method for adjusting the abundance of oxygen defects by regulating the preparation pH values of MgLa-LDH was used to enhance phosphate efficient adsorption. The MgLa-LDH with high-defect-degree (ML-11) presented a larger adsorption capacity and faster mass-transfer than that of low-defect-degree LDH (ML-10). Particularly, the adsorption capacity (121.56 mg/g) and initial adsorption rate (16.25 mg/g⋅min) of ML-11 were 1.8 times and 2.6 times higher than those in ML-10 in neutral condition, respectively. Characterization results confirmed that oxygen defects played a vital role in phosphate adsorption. The promotion mechanism of oxygen defects on phosphate absorption included the enhancing electrostatic attraction via increasing surface electron density, boosting M-OH groups generated by oxygen defects, and reducing adsorption energy. Compared with ML-10, ML-11 had similar or even better resistance of coexisting anions, and regeneration performance. Furthermore, the performance of ML-11 was verified in fixed-bed column experiment with real wastewater, and the treatment bed volume of it (978.6 BV) was higher than that in ML-10 (509.7 BV). The oxygen defects method can provide a promising choice for improving the material properties of efficient phosphate removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的人龙完成签到,获得积分10
刚刚
稚初完成签到,获得积分10
刚刚
tommyliu完成签到,获得积分10
刚刚
刚刚
aaaaaa发布了新的文献求助10
刚刚
刚刚
搜集达人应助mimi采纳,获得10
1秒前
学术小菜鸟完成签到 ,获得积分10
1秒前
1秒前
真实的俊驰完成签到,获得积分10
1秒前
平淡的蜻蜓完成签到,获得积分10
2秒前
2秒前
Vii应助宋宋宋2采纳,获得10
3秒前
胡天萌发布了新的文献求助10
4秒前
Grinder完成签到 ,获得积分10
5秒前
MADKAI发布了新的文献求助20
5秒前
圆滑的铁勺完成签到,获得积分10
6秒前
6秒前
6秒前
zhangting完成签到,获得积分10
7秒前
AAAAAAAAAAA完成签到,获得积分10
7秒前
vvvvvvv完成签到,获得积分10
7秒前
7秒前
wanyanjin应助1111采纳,获得10
7秒前
gaos发布了新的文献求助10
8秒前
小吴完成签到,获得积分10
9秒前
迟大猫应助Star1983采纳,获得10
9秒前
chinning完成签到,获得积分10
10秒前
Mon_zh发布了新的文献求助20
10秒前
10秒前
漂亮送终完成签到,获得积分10
10秒前
朴素篮球发布了新的文献求助10
11秒前
天才完成签到 ,获得积分10
11秒前
不喝可乐发布了新的文献求助10
11秒前
12秒前
皮尤尤发布了新的文献求助10
12秒前
13秒前
道中道完成签到,获得积分10
14秒前
14秒前
知之然完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678