Oxygen defects of MgLa-LDH enhancing electrostatic attraction and inner-sphere complexation during phosphate adsorption from wastewater

吸附 氧气 磷酸盐 化学 化学工程 氢氧化物 吸收(声学) 无机化学 材料科学 有机化学 复合材料 工程类
作者
Shuaishuai Li,Junrong Shao,Baiwen Ma,Baile Wu,Chengzhi Hu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:464: 142589-142589 被引量:52
标识
DOI:10.1016/j.cej.2023.142589
摘要

The introduction of oxygen defects toward constructing new binding sites is a promising strategy for improving the adsorption performance of layered double hydroxide (LDH). Here, a facile and novel method for adjusting the abundance of oxygen defects by regulating the preparation pH values of MgLa-LDH was used to enhance phosphate efficient adsorption. The MgLa-LDH with high-defect-degree (ML-11) presented a larger adsorption capacity and faster mass-transfer than that of low-defect-degree LDH (ML-10). Particularly, the adsorption capacity (121.56 mg/g) and initial adsorption rate (16.25 mg/g⋅min) of ML-11 were 1.8 times and 2.6 times higher than those in ML-10 in neutral condition, respectively. Characterization results confirmed that oxygen defects played a vital role in phosphate adsorption. The promotion mechanism of oxygen defects on phosphate absorption included the enhancing electrostatic attraction via increasing surface electron density, boosting M-OH groups generated by oxygen defects, and reducing adsorption energy. Compared with ML-10, ML-11 had similar or even better resistance of coexisting anions, and regeneration performance. Furthermore, the performance of ML-11 was verified in fixed-bed column experiment with real wastewater, and the treatment bed volume of it (978.6 BV) was higher than that in ML-10 (509.7 BV). The oxygen defects method can provide a promising choice for improving the material properties of efficient phosphate removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moon发布了新的文献求助30
刚刚
斯文败类应助OK采纳,获得10
2秒前
SciGPT应助怕孤单的幻枫采纳,获得30
4秒前
4秒前
完美世界应助aa采纳,获得10
4秒前
言简完成签到,获得积分10
5秒前
魔法的水管完成签到,获得积分10
5秒前
充电宝应助椿上春树采纳,获得10
6秒前
科目三应助胡周瑜采纳,获得10
6秒前
科研通AI2S应助肉蛋冲击采纳,获得10
7秒前
言简发布了新的文献求助10
8秒前
Bailey发布了新的文献求助30
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
勤恳的天亦应助Rep4rteR采纳,获得10
9秒前
香蕉觅云应助like采纳,获得10
9秒前
亿万斯年应助莴笋叶采纳,获得10
9秒前
虚幻的不愁完成签到,获得积分10
10秒前
研友_8Y26PL完成签到 ,获得积分10
10秒前
11秒前
八个冬菇完成签到,获得积分10
11秒前
11秒前
12秒前
康康小白杨完成签到 ,获得积分10
13秒前
Easonzk完成签到,获得积分20
13秒前
我是老大应助挚友采纳,获得10
14秒前
高贵小兔子发布了新的文献求助200
17秒前
17秒前
20秒前
zjcomposite发布了新的文献求助10
20秒前
浮游应助PDL_采纳,获得10
21秒前
浮游应助望十五月采纳,获得10
21秒前
21秒前
Ava应助123456采纳,获得10
22秒前
DaomingMMNKM完成签到,获得积分10
23秒前
小迷鹿发布了新的文献求助10
24秒前
勤奋橘子发布了新的文献求助10
25秒前
26秒前
抚琴祛魅发布了新的文献求助30
26秒前
浮游应助险胜采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4922980
求助须知:如何正确求助?哪些是违规求助? 4193539
关于积分的说明 13025255
捐赠科研通 3965408
什么是DOI,文献DOI怎么找? 2173307
邀请新用户注册赠送积分活动 1190954
关于科研通互助平台的介绍 1100443