已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The neural network based Δ-machine learning approach efficiently brings the DFT potential energy surface to the CCSD(T) quality: a case for the OH + CH3OH reaction

势能面 氢原子萃取 人工神经网络 计算机科学 化学 燃烧 计算化学 物理化学 人工智能 分子 有机化学
作者
K. Song,Jun Li
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (16): 11192-11204 被引量:8
标识
DOI:10.1039/d3cp00665d
摘要

The recently proposed permutationally invariant polynomial-neural network (PIP-NN) based Δ-machine learning (Δ-ML) approach (PIP-NN Δ-ML) is a flexible, general, and highly cost-efficient method to develop a full dimensional accurate potential energy surface (PES). Only a small portion of points, which can be actively selected from the low-level (often DFT) dataset, with high-level energies are needed to bring a low-level PES to a high-level of quality. The hydrogen abstraction reaction between the methanol and hydroxyl radical, OH + CH3OH, has been studied using theories and experiments for a long time due to its great importance in combustion, atmospheric and interstellar chemistry. However, it is not trivial to develop the full dimensional accurate PES for it. In this work, the PIP-NN Δ-ML method is successfully applied to the title reaction. The DFT PES was fitted by using 140 192 points. Only 5% of the DFT dataset was needed to be calculated at the level of UCCSD(T)-F12a/AVTZ, aiming to improve the DFT PES to the target high-level, UCCSD(T)-F12a/AVTZ. More than 92% of the original unaffordable calculation costs were saved. The kinetics, including rate coefficients and branching ratios, were then studied by performing quasi-classical trajectory calculations on this newly fitted PES for the title reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Wings完成签到 ,获得积分10
5秒前
顺利寄文完成签到 ,获得积分10
5秒前
5秒前
Maliketh应助www232323采纳,获得10
6秒前
羟醛缩合完成签到 ,获得积分10
7秒前
xibei发布了新的文献求助10
7秒前
syl完成签到 ,获得积分0
8秒前
8秒前
CodeCraft应助bobo采纳,获得10
12秒前
积极马里奥完成签到 ,获得积分10
12秒前
Yang发布了新的文献求助10
13秒前
13秒前
CLY发布了新的文献求助10
13秒前
felix发布了新的文献求助10
14秒前
felix发布了新的文献求助10
15秒前
15秒前
felix发布了新的文献求助10
15秒前
20秒前
蓬莱塔图完成签到 ,获得积分10
22秒前
飞逝的快乐时光完成签到 ,获得积分10
22秒前
逻辑猫发布了新的文献求助20
23秒前
爱静静应助jqmiao采纳,获得30
24秒前
xiao完成签到,获得积分20
26秒前
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
SC完成签到,获得积分10
28秒前
竹筏过海应助科研通管家采纳,获得30
28秒前
SciGPT应助kyle竣采纳,获得10
28秒前
简单完成签到,获得积分10
29秒前
啾咪完成签到 ,获得积分10
35秒前
情怀应助派大星采纳,获得10
37秒前
乐观寄真完成签到 ,获得积分10
40秒前
清爽的雨竹完成签到 ,获得积分10
42秒前
俞安珊发布了新的文献求助30
46秒前
111完成签到 ,获得积分10
47秒前
Simen发布了新的文献求助10
47秒前
50秒前
爱读文献完成签到 ,获得积分10
51秒前
殊桐发布了新的文献求助10
54秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307151
求助须知:如何正确求助?哪些是违规求助? 2940952
关于积分的说明 8499680
捐赠科研通 2615163
什么是DOI,文献DOI怎么找? 1428712
科研通“疑难数据库(出版商)”最低求助积分说明 663493
邀请新用户注册赠送积分活动 648355