Deep CNN-based visual defect detection: Survey of current literature

人工智能 计算机科学 深度学习 机器学习 分割 目视检查 领域(数学分析) 机器视觉 无监督学习 像素 大数据 数据挖掘 数学 数学分析
作者
Shashi Bhushan Jha,Radu F. Babiceanu
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:148: 103911-103911 被引量:69
标识
DOI:10.1016/j.compind.2023.103911
摘要

In the past years, the computer vision domain has been profoundly changed by the advent of deep learning algorithms and data science. The defect detection problem is of outmost importance in high-tech industries such as aerospace manufacturing and is extensively employed using automated industrial quality control systems. Defect inspection methods can be mainly grouped into manual inspection, traditional computer vision, and modern computer vision inspection. Initially developed two decades ago, the CNN algorithms recently became popular for solving complex machine vision problems, as big datasets and computationally potent hardware became widely available. Deep learning-based methods form the foundation for modern automatic optical inspection methods and can be grouped based on their network connections into two categories: dense networks and sparse networks. Another method for grouping considers the type of learning: supervised learning used primarily for defect classification and segmentation, and unsupervised learning models, which have the potential to overcome the challenges of supervised models such as labeling images and annotating pixels. In addition, pixel-level based segmentation techniques are considered to cover the state-of-the-art methodologies for the automatic optical inspection. Still, both supervised and unsupervised models pose challenges in regards to model training and attaining the expected detection accuracy. Identified open challenges include algorithmic, application, and data processing challenges. By addressing these challenges, in the future, the demand for automated optical inspection is expected to only grow in both industry practice and academic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAAA完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
黄志敏发布了新的文献求助10
3秒前
濡益完成签到 ,获得积分10
3秒前
qin123完成签到,获得积分10
4秒前
5秒前
CipherSage应助粽子采纳,获得10
5秒前
布洛芬发布了新的文献求助10
6秒前
6秒前
程程程发布了新的文献求助10
6秒前
小崔读研发布了新的文献求助10
6秒前
6秒前
万能图书馆应助90采纳,获得10
7秒前
8秒前
8秒前
Liu发布了新的文献求助10
8秒前
9秒前
9秒前
你好CDY发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
黄志敏完成签到,获得积分10
11秒前
心落失完成签到,获得积分10
11秒前
lh完成签到,获得积分10
11秒前
11秒前
12秒前
清脆又晴发布了新的文献求助10
12秒前
清脆又晴发布了新的文献求助10
12秒前
小蘑菇应助风趣的灵枫采纳,获得10
12秒前
清脆又晴发布了新的文献求助10
13秒前
清脆又晴发布了新的文献求助10
13秒前
清脆又晴发布了新的文献求助10
13秒前
清脆又晴发布了新的文献求助30
13秒前
清脆又晴发布了新的文献求助10
13秒前
清脆又晴发布了新的文献求助30
13秒前
清脆又晴发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769313
求助须知:如何正确求助?哪些是违规求助? 3314504
关于积分的说明 10171882
捐赠科研通 3029644
什么是DOI,文献DOI怎么找? 1662409
邀请新用户注册赠送积分活动 794913
科研通“疑难数据库(出版商)”最低求助积分说明 756440