亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep CNN-based visual defect detection: Survey of current literature

人工智能 计算机科学 深度学习 机器学习 分割 目视检查 领域(数学分析) 机器视觉 无监督学习 像素 大数据 数据挖掘 数学 数学分析
作者
Shashi Bhushan Jha,Radu F. Babiceanu
出处
期刊:Computers in Industry [Elsevier]
卷期号:148: 103911-103911 被引量:20
标识
DOI:10.1016/j.compind.2023.103911
摘要

In the past years, the computer vision domain has been profoundly changed by the advent of deep learning algorithms and data science. The defect detection problem is of outmost importance in high-tech industries such as aerospace manufacturing and is extensively employed using automated industrial quality control systems. Defect inspection methods can be mainly grouped into manual inspection, traditional computer vision, and modern computer vision inspection. Initially developed two decades ago, the CNN algorithms recently became popular for solving complex machine vision problems, as big datasets and computationally potent hardware became widely available. Deep learning-based methods form the foundation for modern automatic optical inspection methods and can be grouped based on their network connections into two categories: dense networks and sparse networks. Another method for grouping considers the type of learning: supervised learning used primarily for defect classification and segmentation, and unsupervised learning models, which have the potential to overcome the challenges of supervised models such as labeling images and annotating pixels. In addition, pixel-level based segmentation techniques are considered to cover the state-of-the-art methodologies for the automatic optical inspection. Still, both supervised and unsupervised models pose challenges in regards to model training and attaining the expected detection accuracy. Identified open challenges include algorithmic, application, and data processing challenges. By addressing these challenges, in the future, the demand for automated optical inspection is expected to only grow in both industry practice and academic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eugene完成签到,获得积分10
1秒前
3秒前
mangle完成签到,获得积分10
4秒前
怡然的一凤完成签到 ,获得积分10
4秒前
iidae完成签到,获得积分10
5秒前
9秒前
科研通AI5应助科研小白采纳,获得10
10秒前
10秒前
星流xx完成签到 ,获得积分10
12秒前
Qi应助科研通管家采纳,获得10
13秒前
桓某人发布了新的文献求助10
14秒前
科研通AI5应助东边采纳,获得10
15秒前
Atropine发布了新的文献求助10
15秒前
18秒前
爆米花应助土豆炖大锅采纳,获得10
22秒前
24秒前
凝凝完成签到 ,获得积分10
27秒前
27秒前
28秒前
bocky完成签到 ,获得积分10
29秒前
科研小白发布了新的文献求助10
33秒前
秋天发布了新的文献求助10
39秒前
隐形曼青应助yyy采纳,获得10
46秒前
ckd关闭了ckd文献求助
49秒前
东边发布了新的文献求助10
50秒前
52秒前
mumu完成签到,获得积分10
55秒前
潮鸣完成签到 ,获得积分10
57秒前
ghan完成签到 ,获得积分10
58秒前
xiuxiuzhang完成签到 ,获得积分10
1分钟前
清逸完成签到 ,获得积分10
1分钟前
1分钟前
快乐的纸飞机完成签到 ,获得积分10
1分钟前
简称王完成签到 ,获得积分10
1分钟前
科研通AI5应助科研小白采纳,获得10
1分钟前
少年故事完成签到,获得积分20
1分钟前
Calyn完成签到 ,获得积分10
1分钟前
Ava应助少年故事采纳,获得10
1分钟前
1分钟前
长情黄蜂完成签到 ,获得积分20
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561862
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412362
捐赠科研通 2835880
什么是DOI,文献DOI怎么找? 1558740
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832