MISSU: 3D Medical Image Segmentation via Self-Distilling TransUNet

计算机科学 编码器 分割 人工智能 变压器 图像分割 推论 图像分辨率 模式识别(心理学) 计算机视觉 量子力学 操作系统 物理 电压
作者
Nan Wang,Shaohui Lin,Xiaoxiao Li,Ke Li,Yunhang Shen,Yue Gao,Lizhuang Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2740-2750 被引量:25
标识
DOI:10.1109/tmi.2023.3264433
摘要

U-Nets have achieved tremendous success in medical image segmentation. Nevertheless, it may have limitations in global (long-range) contextual interactions and edge-detail preservation. In contrast, the Transformer module has an excellent ability to capture long-range dependencies by leveraging the self-attention mechanism into the encoder. Although the Transformer module was born to model the long-range dependency on the extracted feature maps, it still suffers high computational and spatial complexities in processing high-resolution 3D feature maps. This motivates us to design an efficient Transformer-based UNet model and study the feasibility of Transformer-based network architectures for medical image segmentation tasks. To this end, we propose to self-distill a Transformer-based UNet for medical image segmentation, which simultaneously learns global semantic information and local spatial-detailed features. Meanwhile, a local multi-scale fusion block is first proposed to refine fine-grained details from the skipped connections in the encoder by the main CNN stem through self-distillation, only computed during training and removed at inference with minimal overhead. Extensive experiments on BraTS 2019 and CHAOS datasets show that our MISSU achieves the best performance over previous state-of-the-art methods. Code and models are available at: https://github.com/wangn123/MISSU.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文问旋完成签到,获得积分10
1秒前
隐形曼青应助许安采纳,获得10
1秒前
归尘应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
3秒前
归尘应助科研通管家采纳,获得10
3秒前
归尘应助科研通管家采纳,获得20
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
佳佳应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
黑眼豆豆完成签到,获得积分10
4秒前
4秒前
hhh发布了新的文献求助10
5秒前
顾矜应助s615采纳,获得10
6秒前
songjin完成签到 ,获得积分10
9秒前
打打应助称心热狗采纳,获得10
10秒前
Lucas应助hhh采纳,获得10
13秒前
14秒前
机灵的幻灵完成签到 ,获得积分10
14秒前
16秒前
17秒前
Owen应助学业繁忙采纳,获得10
19秒前
shinn发布了新的文献求助10
19秒前
20秒前
20秒前
YHF2完成签到,获得积分10
20秒前
江月年发布了新的文献求助10
22秒前
24秒前
fuiee完成签到,获得积分10
24秒前
称心热狗发布了新的文献求助10
25秒前
英俊的铭应助shinn采纳,获得10
26秒前
wlf_Jesus完成签到,获得积分10
27秒前
27秒前
28秒前
火星上的觅山完成签到,获得积分10
29秒前
謃河鷺起完成签到,获得积分10
30秒前
在水一方应助17381362015采纳,获得10
31秒前
31秒前
热情冰兰发布了新的文献求助20
31秒前
温暖的沛凝完成签到 ,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967152
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163524
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450