How transferable are features in deep neural networks?

初始化 计算机科学 概括性 任务(项目管理) 可转让性 人工智能 一般化 图层(电子) 人工神经网络 卷积神经网络 模式识别(心理学) 深度学习 机器学习 数学 心理学 数学分析 化学 管理 有机化学 罗伊特 经济 心理治疗师 程序设计语言
作者
Jason Yosinski,Jeff Clune,Yoshua Bengio,Hod Lipson
出处
期刊:Cornell University - arXiv 被引量:3512
标识
DOI:10.48550/arxiv.1411.1792
摘要

Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禹代秋完成签到,获得积分10
刚刚
等你下课发布了新的文献求助10
1秒前
张起灵完成签到 ,获得积分10
1秒前
2秒前
班小班完成签到,获得积分10
2秒前
任一笑发布了新的文献求助10
2秒前
3秒前
wsf2023发布了新的文献求助10
4秒前
墙头的草发布了新的文献求助10
4秒前
rio发布了新的文献求助10
4秒前
6秒前
斯文尔阳发布了新的文献求助10
7秒前
颖火虫发布了新的文献求助10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
酷波er应助任一笑采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
dong应助科研通管家采纳,获得10
8秒前
郜雨寒完成签到,获得积分10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得30
8秒前
8秒前
慕青应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
sjckn应助科研通管家采纳,获得30
8秒前
clyde凌丫完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
所所应助马康辉采纳,获得30
10秒前
12秒前
12秒前
畅快慕蕊发布了新的文献求助10
12秒前
13秒前
英俊的铭应助小王同学采纳,获得10
13秒前
昊天锤发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214