清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

How transferable are features in deep neural networks?

初始化 计算机科学 概括性 任务(项目管理) 可转让性 人工智能 一般化 图层(电子) 人工神经网络 卷积神经网络 模式识别(心理学) 深度学习 机器学习 数学 心理学 罗伊特 经济 数学分析 有机化学 化学 管理 程序设计语言 心理治疗师
作者
Jason Yosinski,Jeff Clune,Yoshua Bengio,Hod Lipson
出处
期刊:Cornell University - arXiv 被引量:3512
标识
DOI:10.48550/arxiv.1411.1792
摘要

Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的丹雪完成签到,获得积分10
15秒前
上官若男应助ykssss采纳,获得10
42秒前
52秒前
科研通AI6.1应助悠悠采纳,获得10
1分钟前
李燕伟完成签到 ,获得积分10
1分钟前
1分钟前
悠悠发布了新的文献求助10
1分钟前
英姑应助Ellen采纳,获得30
1分钟前
1分钟前
1分钟前
ykssss发布了新的文献求助10
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
2分钟前
2分钟前
内向的绿应助读书的时候采纳,获得10
2分钟前
3分钟前
hhuajw应助读书的时候采纳,获得10
3分钟前
3分钟前
Ellen发布了新的文献求助30
3分钟前
顾矜应助读书的时候采纳,获得10
4分钟前
潜行者完成签到 ,获得积分10
4分钟前
Alger完成签到,获得积分10
4分钟前
科研通AI6.1应助悠悠采纳,获得10
4分钟前
qq完成签到 ,获得积分10
4分钟前
5分钟前
悠悠完成签到,获得积分20
5分钟前
5分钟前
悠悠发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高挑的白旋风完成签到,获得积分10
5分钟前
6分钟前
阿俊完成签到 ,获得积分10
6分钟前
lydiaabc完成签到,获得积分10
6分钟前
6分钟前
7分钟前
輕瘋发布了新的文献求助10
7分钟前
Ava应助读书的时候采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732540
求助须知:如何正确求助?哪些是违规求助? 5340403
关于积分的说明 15322326
捐赠科研通 4878049
什么是DOI,文献DOI怎么找? 2620881
邀请新用户注册赠送积分活动 1570054
关于科研通互助平台的介绍 1526759