How transferable are features in deep neural networks?

初始化 计算机科学 概括性 任务(项目管理) 可转让性 人工智能 一般化 图层(电子) 人工神经网络 卷积神经网络 模式识别(心理学) 深度学习 机器学习 数学 心理学 数学分析 化学 管理 有机化学 罗伊特 经济 心理治疗师 程序设计语言
作者
Jason Yosinski,Jeff Clune,Yoshua Bengio,Hod Lipson
出处
期刊:Cornell University - arXiv 被引量:3401
标识
DOI:10.48550/arxiv.1411.1792
摘要

Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elsa发布了新的文献求助10
1秒前
1秒前
SciGPT应助WWW采纳,获得10
1秒前
1秒前
小野完成签到,获得积分10
2秒前
2秒前
MS903完成签到 ,获得积分10
2秒前
饶damei发布了新的文献求助10
2秒前
医只兔完成签到,获得积分10
2秒前
SCI发布了新的文献求助10
3秒前
神勇的小懒猪完成签到,获得积分10
3秒前
bkagyin应助活力小鸽子采纳,获得10
3秒前
无花果应助haoxuesheng采纳,获得10
4秒前
pluvia完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
扁桃体永不发炎完成签到,获得积分10
5秒前
7九完成签到,获得积分10
5秒前
Gong完成签到,获得积分10
6秒前
西红柿炒番茄应助sjc采纳,获得20
6秒前
烟花应助sjc采纳,获得10
6秒前
7秒前
sptyzl完成签到 ,获得积分10
7秒前
yoyofun完成签到 ,获得积分10
8秒前
8秒前
Abelyang发布了新的文献求助10
8秒前
Eurus发布了新的文献求助30
9秒前
幸福的冰珍完成签到,获得积分10
10秒前
10秒前
CJW完成签到,获得积分10
10秒前
11秒前
饶damei完成签到,获得积分10
11秒前
隐形曼青应助秃秃24采纳,获得10
12秒前
贺知什么书完成签到,获得积分10
12秒前
王小磊发布了新的文献求助10
13秒前
云散完成签到 ,获得积分10
13秒前
小二郎应助simon采纳,获得10
13秒前
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152657
求助须知:如何正确求助?哪些是违规求助? 2803891
关于积分的说明 7856198
捐赠科研通 2461571
什么是DOI,文献DOI怎么找? 1310444
科研通“疑难数据库(出版商)”最低求助积分说明 629205
版权声明 601782