How transferable are features in deep neural networks?

初始化 计算机科学 概括性 任务(项目管理) 可转让性 人工智能 一般化 图层(电子) 人工神经网络 卷积神经网络 模式识别(心理学) 深度学习 机器学习 数学 心理学 数学分析 化学 管理 有机化学 罗伊特 经济 心理治疗师 程序设计语言
作者
Jason Yosinski,Jeff Clune,Yoshua Bengio,Hod Lipson
出处
期刊:Cornell University - arXiv 被引量:3512
标识
DOI:10.48550/arxiv.1411.1792
摘要

Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡智宸发布了新的文献求助10
刚刚
田様应助脉动采纳,获得10
刚刚
2秒前
vinity完成签到,获得积分10
2秒前
3秒前
dhjic完成签到 ,获得积分10
4秒前
在水一方应助汝桢采纳,获得10
4秒前
5秒前
5秒前
ldz完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
7秒前
8秒前
落后的惜梦完成签到,获得积分10
8秒前
9秒前
小蘑菇应助hyw采纳,获得10
9秒前
gggggggbao发布了新的文献求助10
9秒前
燕麦大王发布了新的文献求助10
9秒前
10秒前
无花果应助hehe采纳,获得30
10秒前
ldz发布了新的文献求助10
11秒前
阿花阿花发布了新的文献求助10
11秒前
汝桢完成签到,获得积分10
12秒前
马开峰发布了新的文献求助10
12秒前
12秒前
13秒前
胡雨轩发布了新的文献求助10
13秒前
月亮发布了新的文献求助10
13秒前
leyi完成签到,获得积分20
13秒前
13秒前
13秒前
852应助白河采纳,获得30
14秒前
怡然诗霜完成签到,获得积分10
14秒前
汝桢发布了新的文献求助10
15秒前
善学以致用应助小凡采纳,获得10
15秒前
桂馥兰馨完成签到,获得积分10
16秒前
Ava应助乐辰采纳,获得10
16秒前
64658应助haha采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968781
求助须知:如何正确求助?哪些是违规求助? 4225990
关于积分的说明 13161443
捐赠科研通 4013136
什么是DOI,文献DOI怎么找? 2195894
邀请新用户注册赠送积分活动 1209316
关于科研通互助平台的介绍 1123362