How transferable are features in deep neural networks?

初始化 计算机科学 概括性 任务(项目管理) 可转让性 人工智能 一般化 图层(电子) 人工神经网络 卷积神经网络 模式识别(心理学) 深度学习 机器学习 数学 心理学 罗伊特 经济 数学分析 有机化学 化学 管理 程序设计语言 心理治疗师
作者
Jason Yosinski,Jeff Clune,Yoshua Bengio,Hod Lipson
出处
期刊:Cornell University - arXiv 被引量:3512
标识
DOI:10.48550/arxiv.1411.1792
摘要

Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小美发布了新的文献求助10
刚刚
刚刚
Ccc发布了新的文献求助30
1秒前
科研锐完成签到,获得积分10
1秒前
虚心的月光完成签到,获得积分10
2秒前
研友_ZAeR6Z发布了新的文献求助10
2秒前
HenryXiao完成签到,获得积分10
2秒前
奕柯发布了新的文献求助10
2秒前
lizl发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
zm发布了新的文献求助10
3秒前
张小欠发布了新的文献求助10
3秒前
迎风映雪发布了新的文献求助10
4秒前
4秒前
zy发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
红白刀完成签到,获得积分10
5秒前
5秒前
彭永橙完成签到,获得积分20
6秒前
CodeCraft应助啊啊啊橙子采纳,获得10
6秒前
6秒前
忆寒完成签到,获得积分10
6秒前
7秒前
聪慧的饼干完成签到,获得积分10
7秒前
徐5V完成签到,获得积分10
7秒前
8秒前
moyuqilin完成签到,获得积分20
8秒前
彩虹捕手发布了新的文献求助10
8秒前
LLL发布了新的文献求助10
8秒前
8秒前
lili发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721