How transferable are features in deep neural networks?

初始化 计算机科学 概括性 任务(项目管理) 可转让性 人工智能 一般化 图层(电子) 人工神经网络 卷积神经网络 模式识别(心理学) 深度学习 机器学习 数学 心理学 数学分析 化学 管理 有机化学 罗伊特 经济 心理治疗师 程序设计语言
作者
Jason Yosinski,Jeff Clune,Yoshua Bengio,Hod Lipson
出处
期刊:Cornell University - arXiv 被引量:3512
标识
DOI:10.48550/arxiv.1411.1792
摘要

Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
naych完成签到,获得积分10
2秒前
xxfsx应助清绘采纳,获得20
2秒前
2秒前
谨慎朝雪发布了新的文献求助10
3秒前
3秒前
好旺发布了新的文献求助10
3秒前
小西发布了新的文献求助10
3秒前
3秒前
风中冰香应助犹豫雅寒采纳,获得10
4秒前
天天快乐应助ellen采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
米丫丫米完成签到,获得积分20
6秒前
隐形听双完成签到 ,获得积分10
7秒前
7秒前
8秒前
haha完成签到 ,获得积分10
8秒前
长安完成签到 ,获得积分10
8秒前
Lucas应助刘艳林采纳,获得10
8秒前
wwwwpy发布了新的文献求助10
8秒前
倪好完成签到,获得积分10
9秒前
党阳阳完成签到,获得积分10
10秒前
子小孙发布了新的文献求助10
10秒前
ly1完成签到 ,获得积分10
10秒前
11秒前
11秒前
Onism发布了新的文献求助10
11秒前
Yy完成签到,获得积分10
11秒前
浮游应助Harden采纳,获得10
11秒前
范冰冰完成签到,获得积分10
12秒前
coldzer0完成签到,获得积分10
12秒前
黄帅比完成签到,获得积分10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
ding应助张兰兰采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458