How transferable are features in deep neural networks?

初始化 计算机科学 概括性 任务(项目管理) 可转让性 人工智能 一般化 图层(电子) 人工神经网络 卷积神经网络 模式识别(心理学) 深度学习 机器学习 数学 心理学 罗伊特 经济 数学分析 有机化学 化学 管理 程序设计语言 心理治疗师
作者
Jason Yosinski,Jeff Clune,Yoshua Bengio,Hod Lipson
出处
期刊:Cornell University - arXiv 被引量:3512
标识
DOI:10.48550/arxiv.1411.1792
摘要

Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyue发布了新的文献求助10
1秒前
bkagyin应助Dreamhappy采纳,获得10
1秒前
852应助盛清让采纳,获得10
2秒前
2秒前
2秒前
平常的灵凡完成签到,获得积分10
3秒前
Future完成签到 ,获得积分10
3秒前
彭于晏应助五六七采纳,获得10
3秒前
wu发布了新的文献求助10
3秒前
花花花海发布了新的文献求助10
3秒前
yyylll完成签到,获得积分10
4秒前
Shawn发布了新的文献求助20
4秒前
画画发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
反方向的枫完成签到,获得积分10
6秒前
CC完成签到,获得积分10
6秒前
科研通AI6应助抱紧我的堡采纳,获得10
6秒前
无语的钢铁侠完成签到,获得积分10
6秒前
6秒前
知性的幼菱完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
CodeCraft应助lallana20采纳,获得10
8秒前
CipherSage应助顺利伊采纳,获得10
8秒前
英勇海发布了新的文献求助10
8秒前
云初完成签到,获得积分10
8秒前
cc完成签到,获得积分20
9秒前
香蕉觅云应助食杂砸采纳,获得10
9秒前
lili666999完成签到,获得积分20
9秒前
Rjy发布了新的文献求助10
9秒前
wanci应助蔚蓝的天空采纳,获得10
9秒前
脑洞疼应助画画采纳,获得10
9秒前
慕青应助add采纳,获得10
10秒前
亦安完成签到,获得积分10
10秒前
10秒前
12等等完成签到,获得积分20
10秒前
lbx发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055