可解释性
计算机科学
人工智能
背景(考古学)
前列腺癌
试验装置
磁共振成像
模式识别(心理学)
医学
机器学习
癌症
放射科
生物
内科学
古生物学
作者
Lizhi Shao,Zhenyu Liu,Jiangang Liu,Ye Yan,Kai Sun,Xiangyu Liu,Jian Lü,Jie Tian
标识
DOI:10.1016/j.compbiomed.2022.106168
摘要
Magnetic resonance imaging (MRI) is considered the best imaging modality for non-invasive observation of prostate cancer. However, the existing quantitative analysis methods still have challenges in patient-level prediction, including accuracy, interpretability, context understanding, tumor delineation dependence, and multiple sequence fusion. Therefore, we propose a topological graph-guided multi-instance network (GMINet) to catch global contextual information of multi-parametric MRI for patient-level prediction. We integrate visual information from multi-slice MRI with slice-to-slice correlations for a more complete context. A novel strategy of attention folwing is proposed to fuse different MRI-based network branches for mp-MRI. Our method achieves state-of-the-art performance for Prostate cancer on a multi-center dataset (N = 478) and a public dataset (N = 204). The five-classification accuracy of Grade Group is 81.1 ± 1.8% (multi-center dataset) from the test set of five-fold cross-validation, and the area under curve of detecting clinically significant prostate cancer is 0.801 ± 0.018 (public dataset) from the test set of five-fold cross-validation respectively. The model also achieves tumor detection based on attention analysis, which improves the interpretability of the model. The novel method is hopeful to further improve the accurate prediction ability of MRI in the diagnosis and treatment of prostate cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI