亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Patient-level grading prediction of prostate cancer from mp-MRI via GMINet

可解释性 计算机科学 人工智能 背景(考古学) 前列腺癌 试验装置 磁共振成像 模式识别(心理学) 医学 机器学习 癌症 放射科 生物 内科学 古生物学
作者
Lizhi Shao,Zhenyu Liu,Jiangang Liu,Ye Yan,Kai Sun,Xiangyu Liu,Jian Lü,Jie Tian
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106168-106168 被引量:6
标识
DOI:10.1016/j.compbiomed.2022.106168
摘要

Magnetic resonance imaging (MRI) is considered the best imaging modality for non-invasive observation of prostate cancer. However, the existing quantitative analysis methods still have challenges in patient-level prediction, including accuracy, interpretability, context understanding, tumor delineation dependence, and multiple sequence fusion. Therefore, we propose a topological graph-guided multi-instance network (GMINet) to catch global contextual information of multi-parametric MRI for patient-level prediction. We integrate visual information from multi-slice MRI with slice-to-slice correlations for a more complete context. A novel strategy of attention folwing is proposed to fuse different MRI-based network branches for mp-MRI. Our method achieves state-of-the-art performance for Prostate cancer on a multi-center dataset (N = 478) and a public dataset (N = 204). The five-classification accuracy of Grade Group is 81.1 ± 1.8% (multi-center dataset) from the test set of five-fold cross-validation, and the area under curve of detecting clinically significant prostate cancer is 0.801 ± 0.018 (public dataset) from the test set of five-fold cross-validation respectively. The model also achieves tumor detection based on attention analysis, which improves the interpretability of the model. The novel method is hopeful to further improve the accurate prediction ability of MRI in the diagnosis and treatment of prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
576-576完成签到 ,获得积分10
22秒前
26秒前
没有几十亿完成签到,获得积分10
32秒前
32秒前
49秒前
虾青素应助王英俊采纳,获得10
1分钟前
JavedAli完成签到,获得积分10
1分钟前
ok123完成签到 ,获得积分10
1分钟前
慕青应助Ha采纳,获得10
1分钟前
卓初露完成签到 ,获得积分10
1分钟前
2分钟前
Ha完成签到,获得积分20
2分钟前
Ha发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
薛清棵发布了新的文献求助10
2分钟前
Alisha完成签到,获得积分10
3分钟前
3分钟前
HD发布了新的文献求助10
3分钟前
4分钟前
4分钟前
HD完成签到,获得积分10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
李爱国应助不是小苦瓜采纳,获得10
4分钟前
不是小苦瓜完成签到,获得积分20
4分钟前
4分钟前
yangyueqiong发布了新的文献求助10
4分钟前
yangyueqiong完成签到,获得积分10
4分钟前
zm完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Marciu33应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
唐泽雪穗发布了新的文献求助10
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199530
求助须知:如何正确求助?哪些是违规求助? 4380069
关于积分的说明 13638812
捐赠科研通 4236529
什么是DOI,文献DOI怎么找? 2324113
邀请新用户注册赠送积分活动 1322112
关于科研通互助平台的介绍 1273438