Time Series Forecasting with Transformer Models and Application to Asset Management

系列(地层学) 资产管理 计量经济学 变压器 时间序列 计算机科学 经济 工程类 财务 机器学习 电气工程 地质学 古生物学 电压
作者
Edmond Lezmi,Jiali Xu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:11
标识
DOI:10.2139/ssrn.4375798
摘要

Since its introduction in 2017 (Vaswani et al., 2017), the Transformer model has excelled in a wide range of tasks involving natural language processing and computer vision. We investigate the Transformer model to address an important sequence learning problem in finance: time series forecasting. The underlying idea is to use the attention mechanism and the seq2seq architecture in the Transformer model to capture long-range dependencies and interactions across assets and perform multi-step time series forecasting in finance. The first part of this article systematically reviews the Transformer model while highlighting its strengths and limitations. In particular, we focus on the attention mechanism and the seq2seq architecture, which are at the core of the Transformer model. Inspired by the concept of weak learners in ensemble learning, we identify the diversification benefit of generating a collection of low-complexity models with simple structures and fewer features. The second part is dedicated to two financial applications. First, we consider the construction of trend-following strategies. Specifically, we use the encoder part of the Transformer model to construct a binary classification model to predict the sign of an asset’s future returns. The second application is the multi-period portfolio optimization problem, particularly volatility forecasting. In addition, our paper discusses the issues and considerations when using machine learning models in finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助科研痛采纳,获得10
2秒前
石夜一觞完成签到,获得积分10
2秒前
我是老大应助caas6采纳,获得10
3秒前
紫菜发布了新的文献求助10
5秒前
细心雨兰完成签到 ,获得积分10
6秒前
7秒前
挥刀斩情丝完成签到,获得积分10
8秒前
糕手糕手糕糕手应助bias采纳,获得20
16秒前
16秒前
18秒前
wangcaoyi667完成签到,获得积分10
19秒前
隐形的大有完成签到,获得积分10
20秒前
20秒前
情怀应助老汤姆采纳,获得10
21秒前
22秒前
zjspidany应助cancan采纳,获得10
22秒前
瓜瓜发布了新的文献求助10
24秒前
Ma发布了新的文献求助10
24秒前
深情安青应助少夫人采纳,获得10
27秒前
27秒前
29秒前
科研通AI2S应助紫菜采纳,获得10
30秒前
31秒前
今天没烦恼完成签到 ,获得积分10
31秒前
31秒前
pny发布了新的文献求助10
32秒前
明明完成签到 ,获得积分10
35秒前
归尘发布了新的文献求助10
35秒前
35秒前
zcz完成签到,获得积分20
35秒前
rengar完成签到,获得积分10
36秒前
37秒前
HEIKU应助无限的猕猴桃采纳,获得10
37秒前
HEIKU应助无限的猕猴桃采纳,获得10
37秒前
爆米花应助韦老虎采纳,获得10
38秒前
Claire完成签到,获得积分10
38秒前
NexusExplorer应助漂亮的如容采纳,获得10
39秒前
顾矜应助淡淡的小蜜蜂采纳,获得10
40秒前
40秒前
nkdailingyun发布了新的文献求助10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314113
求助须知:如何正确求助?哪些是违规求助? 2946546
关于积分的说明 8530432
捐赠科研通 2622170
什么是DOI,文献DOI怎么找? 1434347
科研通“疑难数据库(出版商)”最低求助积分说明 665268
邀请新用户注册赠送积分活动 650832