LF-YOLO: A Lighter and Faster YOLO for Weld Defect Detection of X-Ray Image

特征(语言学) 编码(集合论) 计算机科学 卷积(计算机科学) 人工智能 特征提取 模式识别(心理学) 图像(数学) 焊接 卷积神经网络 人工神经网络 计算机视觉 工程类 机械工程 哲学 集合(抽象数据类型) 程序设计语言 语言学
作者
Moyun Liu,Youping Chen,Jingming Xie,Lei He,Yang Zhang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7430-7439 被引量:38
标识
DOI:10.1109/jsen.2023.3247006
摘要

X-ray image plays an important role in manufacturing industry for quality assurance, because it can reflect the internal condition of weld region. However, the shape and scale of different defect types vary greatly, which makes it challenging for model to detect weld defects. In this article, we propose a weld defect detection method based on convolution neural network (CNN), namely, lighter and faster YOLO (LF-YOLO). In particular, a reinforced multiscale feature (RMF) module is designed to implement both parameter-based and parameter-free multiscale information extracting operations. RMF enables the extracted feature map to represent more plentiful information, which is achieved by a superior hierarchical fusion structure. To improve the performance of detection network, we propose an efficient feature extraction (EFE) module. EFE processes input data with extremely low consumption and improves the practicability of whole network in actual industry. Experimental results show that our weld defect detection network achieves satisfactory balance between performance and consumption and reaches 92.9 mean average precision (mAP50) with 61.5 frames/s. To further prove the ability of our method, we test it on the public dataset MS COCO, and the results show that our LF-YOLO has an outstanding versatility detection performance. The code is available at https://github.com/lmomoy/LF-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
不过敏的橙子完成签到,获得积分10
2秒前
歪比八不完成签到,获得积分20
2秒前
4秒前
搞快点发布了新的文献求助10
5秒前
6秒前
鸡蛋布丁完成签到 ,获得积分10
6秒前
6秒前
稀松完成签到,获得积分0
7秒前
小月亮发布了新的文献求助30
8秒前
8秒前
劲秉应助心随以动采纳,获得10
8秒前
是莉莉娅发布了新的文献求助30
9秒前
10秒前
林齐完成签到 ,获得积分10
11秒前
字符串完成签到,获得积分10
11秒前
陈阳发布了新的文献求助10
11秒前
valorb完成签到,获得积分10
12秒前
Opse完成签到,获得积分0
12秒前
中中发布了新的文献求助10
13秒前
Atopos发布了新的文献求助10
15秒前
虚心醉蝶完成签到 ,获得积分10
16秒前
16秒前
19秒前
jiangqingquan发布了新的文献求助10
22秒前
左白易发布了新的文献求助10
23秒前
萧羽完成签到,获得积分10
23秒前
科研通AI2S应助新鲜事采纳,获得10
24秒前
24秒前
My完成签到,获得积分10
24秒前
25秒前
orixero应助是莉莉娅采纳,获得30
25秒前
领导范儿应助基本采纳,获得10
25秒前
顾矜应助Atopos采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
充电宝应助科研通管家采纳,获得10
26秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
Handbook on People's China (1957) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3189181
求助须知:如何正确求助?哪些是违规求助? 2838612
关于积分的说明 8020271
捐赠科研通 2501388
什么是DOI,文献DOI怎么找? 1335575
科研通“疑难数据库(出版商)”最低求助积分说明 637634
邀请新用户注册赠送积分活动 605685