Counterfactual Graph Learning for Anomaly Detection on Attributed Networks

反事实思维 虚假关系 计算机科学 异常检测 图形 机器学习 人工智能 数据建模 生成语法 数据挖掘 理论计算机科学 数据库 认识论 哲学
作者
Chunjing Xiao,Xovee Xu,Lei Yue,Kunpeng Zhang,Siyuan Liu,Fan Zhou
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 10540-10553 被引量:8
标识
DOI:10.1109/tkde.2023.3250523
摘要

Graph anomaly detection is attracting remarkable multidisciplinary research interests ranging from finance, healthcare, and social network analysis. Recent advances on graph neural networks have substantially improved the detection performance via semi-supervised representation learning. However, prior work suggests that deep graph-based methods tend to learn spurious correlations. As a result, they fail to generalize beyond training data distribution. In this article, we aim to identify structural and contextual anomaly nodes in an attributed graph. Based on our preliminary data analyses, spurious correlations can be eliminated with causal subgraph interventions. Therefore, we propose a new graph-based anomaly detection model that can learn causal relations for anomaly detection while generalizing to new environments. To handle situations with varying environments, we steer the generative model to manufacture synthetic environment features, which are exerted on realistic subgraphs to generate counterfactual subgraphs. Further, these counterfactual subgraphs help a few-shot anomaly detection model learn transferable and causal relations across different environments. The experiments on three real-world attributed graphs show that the proposed approach achieves the best performance compared to the state-of-the-art baselines and learns robust causal representations resistant to noises and spurious correlations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huapeng发布了新的文献求助10
2秒前
李健的小迷弟应助cc采纳,获得10
2秒前
cc小木屋应助乐观的镜子采纳,获得10
3秒前
4秒前
鱼鳞飞飞发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
小马甲应助111采纳,获得10
7秒前
8秒前
ding应助潇洒小甜瓜采纳,获得10
8秒前
ETO完成签到,获得积分10
8秒前
小冯发布了新的文献求助30
10秒前
fifteen发布了新的文献求助10
10秒前
11秒前
11秒前
ETO发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
健忘的谷冬完成签到,获得积分10
16秒前
彳亍1117应助Drorme采纳,获得10
17秒前
17秒前
zachatyTS发布了新的文献求助40
17秒前
GAO发布了新的文献求助10
17秒前
FashionBoy应助野椒搞科研采纳,获得10
19秒前
19秒前
杰杰发布了新的文献求助10
19秒前
阳光海云应助huapeng采纳,获得10
20秒前
hugeyoung发布了新的文献求助10
21秒前
aDou发布了新的文献求助10
24秒前
24秒前
24秒前
huapeng完成签到,获得积分10
25秒前
慕青应助dpp采纳,获得10
25秒前
28秒前
fifteen发布了新的文献求助10
28秒前
麻辣烫加麻加辣完成签到,获得积分10
29秒前
30秒前
小萝莉发布了新的文献求助10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160857
求助须知:如何正确求助?哪些是违规求助? 2812058
关于积分的说明 7894301
捐赠科研通 2470980
什么是DOI,文献DOI怎么找? 1315808
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602068