Global Meta-analysis of Urine Microbiome: Colonization of Polycyclic Aromatic Hydrocarbon–degrading Bacteria Among Bladder Cancer Patients

微生物群 尿 膀胱癌 医学 泌尿系统 癌症 计算生物学 生物 基因组 生物信息学 内科学 遗传学 基因
作者
Laura Bukavina,Ilaha Isali,Rashida Ginwala,Mohit Sindhani,Adam Calaway,Diana Magee,Benjamin Miron,Andres F. Correa,Alexander Kutikov,Matthew R. Zibelman,Mahmoud A. Ghannoum,Mauricio Retuerto,Lee Ponsky,Sarah C. Markt,Robert G. Uzzo,Philip H. Abbosh
出处
期刊:European Urology Oncology [Elsevier]
卷期号:6 (2): 190-203 被引量:23
标识
DOI:10.1016/j.euo.2023.02.004
摘要

The application of next-generation sequencing techniques has enabled characterization of urinary tract microbiome. Although many studies have demonstrated associations between the human microbiome and bladder cancer (BC), these have not always reported consistent results, thereby necessitating cross-study comparisons. Thus, the fundamental questions remain how we can utilize this knowledge.The aim of our study was to examine the disease-associated changes in urine microbiome communities globally utilizing a machine learning algorithm.Raw FASTQ files were downloaded for the three published studies in urinary microbiome in BC patients, in addition to our own prospectively collected cohort.Demultiplexing and classification were performed using the QIIME 2020.8 platform. De novo operational taxonomic units were clustered using the uCLUST algorithm and defined by 97% sequence similarity and classified at the phylum level against the Silva RNA sequence database. The metadata available from the three studies included were used to evaluate the differential abundance between BC patients and controls via a random-effect meta-analysis using the metagen R function. A machine learning analysis was performed using the SIAMCAT R package.Our study includes 129 BC urine and 60 healthy control samples across four different countries. We identified a total of 97/548 genera to be differentially abundant in the BC urine microbiome compared with that of healthy patients. Overall, while the differences in diversity metrics were clustered around the country of origin (Kruskal-Wallis, p < 0.001), collection methodology was a driver of microbiome composition. When assessing dataset from China, Hungary, and Croatia, data demonstrated no discrimination capacity to distinguish between BC patients and healthy adults (area under the curve [AUC] 0.577). However, inclusion of samples with catheterized urine improved the diagnostic accuracy of prediction for BC to AUC 0.995, with precision-recall AUC = 0.994. Through elimination of contaminants associated with the collection methodology among all cohorts, our study identified increased abundance of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria Sphingomonas, Acinetobacter, Micrococcus, Pseudomonas, and Ralstonia to be consistently present in BC patients.The microbiota of the BC population may be a reflection of PAH exposure from smoking, environmental pollutants, and ingestion. Presence of PAHs in the urine of BC patients may allow for a unique metabolic niche and provide necessary metabolic resources where other bacteria are not able to flourish. Furthermore, we found that while compositional differences are associated with geography more than with disease, many are driven by the collection methodology.The goal of our study was to compare the urine microbiome of bladder cancer patients with that of healthy controls and evaluate any potential bacteria that may be more likely to be found in patients with bladder cancer. Our study is unique as it evaluates this across multiple countries, to find a common pattern. After we removed some of the contamination, we were able to localize several key bacteria that are more likely to be found in the urine of bladder cancer patients. These bacteria all share their ability to break down tobacco carcinogens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助研友_Z1WvKL采纳,获得10
刚刚
刚刚
幽默鸡完成签到,获得积分20
刚刚
微笑大螃蟹完成签到,获得积分10
1秒前
Richard发布了新的文献求助10
1秒前
GGBond完成签到,获得积分10
2秒前
机智咖啡豆完成签到 ,获得积分10
2秒前
2秒前
早早发布了新的文献求助10
2秒前
科研王发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助stzzyuan采纳,获得10
3秒前
4秒前
慎独完成签到 ,获得积分10
4秒前
天真台灯发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
万海发布了新的文献求助10
6秒前
6秒前
落后安容完成签到,获得积分20
6秒前
秋林完成签到,获得积分10
7秒前
7秒前
ljw完成签到 ,获得积分10
7秒前
Deposit发布了新的文献求助10
8秒前
秋林发布了新的文献求助10
9秒前
9秒前
刘卿婷发布了新的文献求助10
10秒前
11秒前
缥缈的玉米完成签到,获得积分10
11秒前
hhhhhhhhhh发布了新的文献求助10
11秒前
RE完成签到 ,获得积分10
12秒前
12秒前
小马甲应助wuxunxun2015采纳,获得10
12秒前
小马甲应助Erueka采纳,获得10
13秒前
俏皮行云完成签到 ,获得积分10
13秒前
14秒前
14秒前
jin发布了新的文献求助30
14秒前
MRen_YY发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812