亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of on‐tree chestnut fruits using deep learning and RGB unmanned aerial vehicle imagery for estimation of yield and fruit load

数学 RGB颜色模型 统计 人工智能 树(集合论) 均方误差 计算机科学 数学分析
作者
Takumi Arakawa,Takashi Tanaka,Shinji Kamio
出处
期刊:Agronomy Journal [Wiley]
被引量:5
标识
DOI:10.1002/agj2.21330
摘要

Abstract The on‐tree counting of chestnut fruit (bur) is essential for yield estimation and monitoring of fruit load as well as tree health, which is important in determining the management strategy for orchards, markets, and tree health monitoring. However, the practice is still conducted by manual count or farmers’ intuition. Precise and effective counting method is yet to be established. This study attempted to count chestnut fruits with the object detection algorithm, You Only Look Once (YOLO), using the RGB imagery collected with an unmanned aerial vehicle (UAV). The model trained with 500 images (7866 burs labeled with bounding boxes) in YOLO version 4 (v4) could count the number of burs with a R 2 value of 0.98 and a root mean square error of 6.3 (8.3% of the mean) relative to the manual count in the data set for each whole tree ( n = 53). The R 2 of linear regression between the number of burs obtained with the YOLOv4 model and the total yield was 0.76, with a standard error of 1.08 kg tree −1 (26.4% of coefficient of variation), which was equivalent to the in situ burs count by an expert technician. In addition, the number of burs counted with the YOLOv4 model after the adjustment of trunk circumference was negatively correlated with nut weight. Overall, the study revealed that YOLO algorithm coupled with UAV‐based RGB imagery is a precise and efficient method for on‐tree burs detection, which could be used as an indicator of yield and fruit load.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chunlily完成签到,获得积分10
8秒前
43秒前
1分钟前
精明柜子完成签到,获得积分10
1分钟前
2分钟前
2分钟前
zhangxiaoqing发布了新的文献求助10
2分钟前
李健应助猫抓板采纳,获得10
2分钟前
pups发布了新的文献求助10
2分钟前
2分钟前
丘比特应助洁净以冬采纳,获得10
2分钟前
猫抓板发布了新的文献求助10
2分钟前
天天快乐应助pups采纳,获得10
2分钟前
米乐金金关注了科研通微信公众号
3分钟前
3分钟前
米乐金金发布了新的文献求助10
3分钟前
猫抓板发布了新的文献求助10
3分钟前
3分钟前
852应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
曦颜发布了新的文献求助10
3分钟前
3分钟前
3分钟前
米乐金金完成签到,获得积分10
4分钟前
4分钟前
洁净以冬发布了新的文献求助10
4分钟前
Zhang发布了新的文献求助10
4分钟前
77发布了新的文献求助30
4分钟前
充电宝应助77采纳,获得10
5分钟前
Alisha完成签到,获得积分10
5分钟前
5分钟前
zznzn发布了新的文献求助10
5分钟前
77完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
今后应助zznzn采纳,获得10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
Ava应助Zhang采纳,获得10
5分钟前
领导范儿应助小球采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671281
求助须知:如何正确求助?哪些是违规求助? 4914337
关于积分的说明 15134450
捐赠科研通 4830120
什么是DOI,文献DOI怎么找? 2586781
邀请新用户注册赠送积分活动 1540370
关于科研通互助平台的介绍 1498579