A comprehensive metabolic map reveals major quality regulations in red‐flesh kiwifruit (Actinidia chinensis)

猕猴桃 猕猴桃 代谢组学 生物 成熟 转录组 代谢途径 代谢调节 猕猴桃 植物 肉体 计算生物学 基因 生物化学 新陈代谢 食品科学 基因表达 生物信息学
作者
Peng Shu,Zixin Zhang,Yi Wu,Yuan Chen,Kunyan Li,Heng Deng,Jing Zhang,Xin Zhang,Jiayu Wang,Zhibin Liu,Yue Xie,Kui Du,Mingzhang Li,Mondher Bouzayen,Yiguo Hong,Yang Zhang,Mingchun Liu
出处
期刊:New Phytologist [Wiley]
卷期号:238 (5): 2064-2079 被引量:35
标识
DOI:10.1111/nph.18840
摘要

Summary Kiwifruit ( Actinidia chinensis ) is one of the popular fruits world‐wide, and its quality is mainly determined by key metabolites (sugars, flavonoids, and vitamins). Previous works on kiwifruit are mostly done via a single omics approach or involve only limited metabolites. Consequently, the dynamic metabolomes during kiwifruit development and ripening and the underlying regulatory mechanisms are poorly understood. In this study, using high‐resolution metabolomic and transcriptomic analyses, we investigated kiwifruit metabolic landscapes at 11 different developmental and ripening stages and revealed a parallel classification of 515 metabolites and their co‐expressed genes into 10 distinct metabolic vs gene modules (MM vs GM). Through integrative bioinformatics coupled with functional genomic assays, we constructed a global map and uncovered essential transcriptomic and transcriptional regulatory networks for all major metabolic changes that occurred throughout the kiwifruit growth cycle. Apart from known MM vs GM for metabolites such as soluble sugars, we identified novel transcription factors that regulate the accumulation of procyanidins, vitamin C, and other important metabolites. Our findings thus shed light on the kiwifruit metabolic regulatory network and provide a valuable resource for the designed improvement of kiwifruit quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
庞威完成签到 ,获得积分10
1秒前
汐月给汐月的求助进行了留言
1秒前
2秒前
ShowMaker举报正在通话中求助涉嫌违规
4秒前
4秒前
5秒前
7秒前
Rich_WH发布了新的文献求助10
7秒前
7秒前
LL77完成签到,获得积分10
8秒前
小王完成签到,获得积分10
8秒前
LYL完成签到,获得积分10
8秒前
ding应助YY采纳,获得10
10秒前
11秒前
12秒前
14秒前
15秒前
小二郎应助顺sci采纳,获得10
16秒前
16秒前
薰硝壤应助xiaoxiao采纳,获得10
19秒前
大模型应助Rich_WH采纳,获得10
19秒前
俭朴的寇发布了新的文献求助10
19秒前
星辰大海应助丿小智灬采纳,获得10
20秒前
独特飞鸟完成签到 ,获得积分10
20秒前
21秒前
21秒前
21秒前
盐酸补钙完成签到,获得积分10
22秒前
24秒前
搜集达人应助零点起步采纳,获得10
25秒前
26秒前
老六发布了新的文献求助10
26秒前
落寞的八宝粥完成签到,获得积分20
27秒前
27秒前
糖耶a完成签到,获得积分10
27秒前
健忘惜海完成签到,获得积分20
28秒前
隐形曼青应助look采纳,获得10
28秒前
29秒前
rubywang发布了新的文献求助30
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145183
求助须知:如何正确求助?哪些是违规求助? 2796550
关于积分的说明 7820359
捐赠科研通 2452897
什么是DOI,文献DOI怎么找? 1305280
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449