亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MTA-YOLACT: Multitask-aware network on fruit bunch identification for cherry tomato robotic harvesting

花梗 人工智能 轮廓 分割 计算机科学 任务(项目管理) 模式识别(心理学) 园艺 生物 工程类 计算机图形学(图像) 系统工程
作者
Yajun Li,Qingchun Feng,Cheng Liu,Zicong Xiong,Yuhuan Sun,Feng Xie,Tao Li,Chunjiang Zhao
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:146: 126812-126812 被引量:45
标识
DOI:10.1016/j.eja.2023.126812
摘要

Accurate and rapid perception of fruit bunch posture is necessary for the cherry tomato harvesting robot to successfully achieve the bunch’s holding and separating. According to the postural relationship of the fruit bunch, bunch pedicel, and plant’ main-stem, the robotic end-effector’s holding region and approach path could be determined, which were important for successful picking operation. The main goal of this research was to propose a multitask-aware network (MTA-YOLACT), which simultaneously performed region detection on fruit bunch, and region segmentation on pedicel and main-stem. The MTA-YOLACT extended from the pre-trained YOLACT model, included two detector branch networks for detection and instance segment, which shared the same backbone network, and the loss function with weighting coefficients of the two branches was adopted to balance the multi-task learning, according to multi-task’s homoscedastic uncertainty during the model training. Furthermore, in order to cluster the fruit bunch, pedicel and main-stem from the same bunch target, a classification and regression tree (CART) model was built, based on the region’s positional relationship from the MTA-YOLACT output. An image dataset of cherry tomato plants in China greenhouse was built to training and test the model. The results indicated a promising performance of the proposed network, with an F1-score of 95.4% on detecting fruit bunches and the mean Average Precision of 38.7% and 51.9% on the instance segmentation of pedicel and main-stem, which was 1.1% and 3.5% more than original YOLACT. Beyond that, our approach performed a real-time detection and instance segmentation of 13.3 frames per second (FPS). The whole bunch could be identified by the CART model with an average accuracy of 99.83% and the time cost of 9.53 ms. These results demonstrated the research could be a viable support to the harvesting robot’s vision unit development and the end-effector’s motion planning in the future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
Zhao0112发布了新的文献求助10
9秒前
zmjmj发布了新的文献求助10
10秒前
rd完成签到,获得积分10
14秒前
紫紫完成签到,获得积分10
15秒前
21秒前
万能图书馆应助渥鸡蛋采纳,获得10
21秒前
ramsey33完成签到 ,获得积分10
22秒前
26秒前
27秒前
32秒前
顺利完成签到,获得积分10
33秒前
36秒前
38秒前
冷静新烟发布了新的文献求助10
38秒前
38秒前
小小K发布了新的文献求助10
39秒前
佳言2009完成签到 ,获得积分10
39秒前
渥鸡蛋发布了新的文献求助10
42秒前
zzz发布了新的文献求助10
43秒前
zzz完成签到 ,获得积分10
52秒前
小二郎应助段红琼采纳,获得10
1分钟前
1分钟前
1分钟前
丘比特应助盛天虹采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
白华苍松发布了新的文献求助10
1分钟前
1分钟前
1分钟前
秦时明月发布了新的文献求助10
1分钟前
1分钟前
苏菲完成签到,获得积分10
1分钟前
怕孤独的棒球完成签到 ,获得积分10
1分钟前
手术刀完成签到 ,获得积分10
1分钟前
大抵是能上岸的完成签到,获得积分10
1分钟前
1分钟前
科目三应助幽默依凝采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755264
求助须知:如何正确求助?哪些是违规求助? 5492899
关于积分的说明 15381023
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632093
邀请新用户注册赠送积分活动 1579947
关于科研通互助平台的介绍 1535765