亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MTA-YOLACT: Multitask-aware network on fruit bunch identification for cherry tomato robotic harvesting

花梗 人工智能 轮廓 分割 计算机科学 任务(项目管理) 模式识别(心理学) 园艺 生物 工程类 计算机图形学(图像) 系统工程
作者
Yajun Li,Qingchun Feng,Cheng Liu,Zicong Xiong,Yuhuan Sun,Feng Xie,Tao Li,Chunjiang Zhao
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:146: 126812-126812 被引量:35
标识
DOI:10.1016/j.eja.2023.126812
摘要

Accurate and rapid perception of fruit bunch posture is necessary for the cherry tomato harvesting robot to successfully achieve the bunch’s holding and separating. According to the postural relationship of the fruit bunch, bunch pedicel, and plant’ main-stem, the robotic end-effector’s holding region and approach path could be determined, which were important for successful picking operation. The main goal of this research was to propose a multitask-aware network (MTA-YOLACT), which simultaneously performed region detection on fruit bunch, and region segmentation on pedicel and main-stem. The MTA-YOLACT extended from the pre-trained YOLACT model, included two detector branch networks for detection and instance segment, which shared the same backbone network, and the loss function with weighting coefficients of the two branches was adopted to balance the multi-task learning, according to multi-task’s homoscedastic uncertainty during the model training. Furthermore, in order to cluster the fruit bunch, pedicel and main-stem from the same bunch target, a classification and regression tree (CART) model was built, based on the region’s positional relationship from the MTA-YOLACT output. An image dataset of cherry tomato plants in China greenhouse was built to training and test the model. The results indicated a promising performance of the proposed network, with an F1-score of 95.4% on detecting fruit bunches and the mean Average Precision of 38.7% and 51.9% on the instance segmentation of pedicel and main-stem, which was 1.1% and 3.5% more than original YOLACT. Beyond that, our approach performed a real-time detection and instance segmentation of 13.3 frames per second (FPS). The whole bunch could be identified by the CART model with an average accuracy of 99.83% and the time cost of 9.53 ms. These results demonstrated the research could be a viable support to the harvesting robot’s vision unit development and the end-effector’s motion planning in the future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助yangderder采纳,获得10
21秒前
琉璃发布了新的文献求助10
24秒前
27秒前
yangderder发布了新的文献求助10
32秒前
49秒前
49秒前
RR发布了新的文献求助10
55秒前
1分钟前
1分钟前
小艺发布了新的文献求助10
1分钟前
qzxwsa发布了新的文献求助10
1分钟前
科研通AI5应助小艺采纳,获得10
1分钟前
1分钟前
英俊的铭应助qzxwsa采纳,获得10
1分钟前
瘦瘦山菡完成签到,获得积分10
1分钟前
Zoom应助科研通管家采纳,获得20
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
Ecokarster完成签到,获得积分10
2分钟前
BLUE发布了新的文献求助30
2分钟前
2分钟前
一一驳回了Li应助
2分钟前
田様应助yizhizmd采纳,获得10
2分钟前
xj完成签到,获得积分10
2分钟前
Susieeeeee完成签到,获得积分20
2分钟前
2分钟前
2分钟前
YuequnMa完成签到,获得积分10
3分钟前
又又发布了新的文献求助10
3分钟前
3分钟前
799完成签到 ,获得积分10
3分钟前
思源应助高小航采纳,获得10
3分钟前
3分钟前
小姑不在完成签到,获得积分10
3分钟前
flyinthesky完成签到,获得积分10
3分钟前
王博涵发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957927
求助须知:如何正确求助?哪些是违规求助? 4219129
关于积分的说明 13133148
捐赠科研通 4002210
什么是DOI,文献DOI怎么找? 2190237
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116613