亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MTA-YOLACT: Multitask-aware network on fruit bunch identification for cherry tomato robotic harvesting

花梗 人工智能 轮廓 分割 数学 计算机科学 温室 圣女果 图像分割 鉴定(生物学) 树(集合论) 管道(软件) 加权 模式识别(心理学) 传单(植物学) 计算机视觉 水准点(测量) 可解释性 园艺 探测器 机器人 路径(计算) 帧(网络) 特征(语言学)
作者
Yajun Li,Qingchun Feng,Cheng Liu,Zicong Xiong,Yuhuan Sun,Feng Xie,Tao Li,Chunjiang Zhao
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:146: 126812-126812 被引量:43
标识
DOI:10.1016/j.eja.2023.126812
摘要

Accurate and rapid perception of fruit bunch posture is necessary for the cherry tomato harvesting robot to successfully achieve the bunch’s holding and separating. According to the postural relationship of the fruit bunch, bunch pedicel, and plant’ main-stem, the robotic end-effector’s holding region and approach path could be determined, which were important for successful picking operation. The main goal of this research was to propose a multitask-aware network (MTA-YOLACT), which simultaneously performed region detection on fruit bunch, and region segmentation on pedicel and main-stem. The MTA-YOLACT extended from the pre-trained YOLACT model, included two detector branch networks for detection and instance segment, which shared the same backbone network, and the loss function with weighting coefficients of the two branches was adopted to balance the multi-task learning, according to multi-task’s homoscedastic uncertainty during the model training. Furthermore, in order to cluster the fruit bunch, pedicel and main-stem from the same bunch target, a classification and regression tree (CART) model was built, based on the region’s positional relationship from the MTA-YOLACT output. An image dataset of cherry tomato plants in China greenhouse was built to training and test the model. The results indicated a promising performance of the proposed network, with an F1-score of 95.4% on detecting fruit bunches and the mean Average Precision of 38.7% and 51.9% on the instance segmentation of pedicel and main-stem, which was 1.1% and 3.5% more than original YOLACT. Beyond that, our approach performed a real-time detection and instance segmentation of 13.3 frames per second (FPS). The whole bunch could be identified by the CART model with an average accuracy of 99.83% and the time cost of 9.53 ms. These results demonstrated the research could be a viable support to the harvesting robot’s vision unit development and the end-effector’s motion planning in the future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheng完成签到 ,获得积分10
1秒前
脑洞疼应助是漏漏呀采纳,获得10
13秒前
14秒前
21秒前
Criminology34应助科研通管家采纳,获得10
23秒前
HaCat应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
HaCat应助科研通管家采纳,获得10
24秒前
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
领导范儿应助光亮的半山采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
是漏漏呀发布了新的文献求助10
29秒前
29秒前
Sherry完成签到 ,获得积分10
30秒前
hhdr完成签到 ,获得积分10
34秒前
tttttttt完成签到 ,获得积分10
43秒前
46秒前
sunny完成签到 ,获得积分10
47秒前
能干的人完成签到,获得积分10
47秒前
linfordlu发布了新的文献求助10
52秒前
从一岁就很帅完成签到,获得积分10
52秒前
55秒前
55秒前
锦云完成签到,获得积分10
56秒前
光亮的半山完成签到,获得积分10
1分钟前
重庆森林完成签到,获得积分10
1分钟前
1分钟前
谭慧娉完成签到 ,获得积分10
1分钟前
HD完成签到,获得积分10
1分钟前
allover完成签到,获得积分10
2分钟前
Li完成签到 ,获得积分10
2分钟前
2分钟前
也是难得取个名完成签到 ,获得积分10
2分钟前
老实验人完成签到,获得积分10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302224
求助须知:如何正确求助?哪些是违规求助? 4449431
关于积分的说明 13848340
捐赠科研通 4335611
什么是DOI,文献DOI怎么找? 2380451
邀请新用户注册赠送积分活动 1375435
关于科研通互助平台的介绍 1341616