亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MTA-YOLACT: Multitask-aware network on fruit bunch identification for cherry tomato robotic harvesting

花梗 人工智能 轮廓 分割 计算机科学 任务(项目管理) 模式识别(心理学) 园艺 生物 工程类 计算机图形学(图像) 系统工程
作者
Yajun Li,Qingchun Feng,Cheng Liu,Zicong Xiong,Yuhuan Sun,Feng Xie,Tao Li,Chunjiang Zhao
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:146: 126812-126812 被引量:17
标识
DOI:10.1016/j.eja.2023.126812
摘要

Accurate and rapid perception of fruit bunch posture is necessary for the cherry tomato harvesting robot to successfully achieve the bunch’s holding and separating. According to the postural relationship of the fruit bunch, bunch pedicel, and plant’ main-stem, the robotic end-effector’s holding region and approach path could be determined, which were important for successful picking operation. The main goal of this research was to propose a multitask-aware network (MTA-YOLACT), which simultaneously performed region detection on fruit bunch, and region segmentation on pedicel and main-stem. The MTA-YOLACT extended from the pre-trained YOLACT model, included two detector branch networks for detection and instance segment, which shared the same backbone network, and the loss function with weighting coefficients of the two branches was adopted to balance the multi-task learning, according to multi-task’s homoscedastic uncertainty during the model training. Furthermore, in order to cluster the fruit bunch, pedicel and main-stem from the same bunch target, a classification and regression tree (CART) model was built, based on the region’s positional relationship from the MTA-YOLACT output. An image dataset of cherry tomato plants in China greenhouse was built to training and test the model. The results indicated a promising performance of the proposed network, with an F1-score of 95.4% on detecting fruit bunches and the mean Average Precision of 38.7% and 51.9% on the instance segmentation of pedicel and main-stem, which was 1.1% and 3.5% more than original YOLACT. Beyond that, our approach performed a real-time detection and instance segmentation of 13.3 frames per second (FPS). The whole bunch could be identified by the CART model with an average accuracy of 99.83% and the time cost of 9.53 ms. These results demonstrated the research could be a viable support to the harvesting robot’s vision unit development and the end-effector’s motion planning in the future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助gujianhua采纳,获得10
9秒前
23秒前
gujianhua发布了新的文献求助10
30秒前
gujianhua完成签到,获得积分10
41秒前
jane123完成签到,获得积分10
44秒前
Raunio完成签到,获得积分10
48秒前
悠悠夏日长完成签到 ,获得积分10
54秒前
56秒前
jane123发布了新的文献求助200
1分钟前
早晚完成签到 ,获得积分10
1分钟前
坚强的广山完成签到,获得积分0
1分钟前
执着艳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
852应助尼克采纳,获得10
2分钟前
Boren完成签到,获得积分10
3分钟前
猪猪猪完成签到,获得积分10
3分钟前
酷炫的善愁关注了科研通微信公众号
3分钟前
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
随机子应助科研通管家采纳,获得10
3分钟前
尼克发布了新的文献求助10
3分钟前
尼克完成签到,获得积分10
3分钟前
fengfenghao完成签到 ,获得积分10
3分钟前
归海一刀完成签到,获得积分10
4分钟前
4分钟前
Xxxudi发布了新的文献求助30
4分钟前
思源应助沉迷学习采纳,获得10
4分钟前
Xxxudi发布了新的文献求助10
5分钟前
jyy应助科研通管家采纳,获得30
5分钟前
华仔应助耍酷芙蓉采纳,获得10
5分钟前
牛少辉发布了新的文献求助10
5分钟前
烟花应助长不出的菌采纳,获得10
6分钟前
Daisykiller完成签到,获得积分20
6分钟前
香蕉觅云应助傅夜山采纳,获得10
6分钟前
6分钟前
6分钟前
Xxxudi发布了新的文献求助10
6分钟前
潇潇洒洒完成签到 ,获得积分10
6分钟前
Momo发布了新的文献求助10
6分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171530
求助须知:如何正确求助?哪些是违规求助? 2822407
关于积分的说明 7939160
捐赠科研通 2483017
什么是DOI,文献DOI怎么找? 1322894
科研通“疑难数据库(出版商)”最低求助积分说明 633795
版权声明 602627