Study on g-C3N4/BiVO4 Binary Composite Photocatalytic Materials

光催化 材料科学 异质结 石墨氮化碳 复合数 化学工程 光致发光 降级(电信) 载流子 吸附 复合材料 催化作用 光电子学 化学 有机化学 计算机科学 工程类 电信
作者
Pengfei Li,Yanqiu Hu,Di Lü,Jiang Wu,Yuguang Lv
出处
期刊:Micromachines [Multidisciplinary Digital Publishing Institute]
卷期号:14 (3): 639-639 被引量:11
标识
DOI:10.3390/mi14030639
摘要

Recent studies have shown that the composite of semiconductor photocatalytic materials and g-C3N4 can effectively inhibit photocatalytic carrier recombination and enhance the adsorption performance of the composite photocatalytic materials, so that the composite photocatalyst has stronger photocatalytic activity. In this paper, three kinds of graphitic carbon nitride photocatalyst g-C3N4 with different morphologies were prepared using the same precursor system by the chemical cracking method. After characterization and application, the sample with the most significant photocatalytic activity was selected and the g-C3N4/BiVO4 heterostructure was synthesized by the simple solvent evaporation method, then the photocatalytic experiment was carried out. The results show that, when the content of BiVO4 in the composite sample is 1%, the photocatalytic activity of RhB was the highest, and the degradation rate could reach 90.4%. The kinetic results showed that the degradation of RhB was consistent with the quasi-primary degradation kinetic model. The results of the photocatalytic cycle experiment show that the photocatalytic performance remains unchanged and stable after four photocatalytic cycles. The existence of a g-C3N4/BiVO4 binary heterojunction was confirmed by UV/Visible diffuse reflection (UV-DRS) and photoluminescence (PL) experiments. Owing to the Z-type charge process between BiVO4 and g-C3N4, efficient carrier separation was achieved, thus enhancing the photocatalytic capacity. This work provides a new idea for the study of heterojunction photocatalytic materials based on g-C3N4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC发布了新的文献求助30
刚刚
依依完成签到 ,获得积分10
2秒前
3秒前
木耳发布了新的文献求助10
6秒前
9秒前
七两碎银子完成签到,获得积分10
11秒前
12秒前
13秒前
baiabi发布了新的文献求助10
14秒前
科研通AI5应助Jzhang采纳,获得10
14秒前
潘雪娟发布了新的文献求助10
17秒前
科研通AI5应助从容未来采纳,获得30
17秒前
CodeCraft应助爱吃香菜采纳,获得10
23秒前
Twistzzh发布了新的文献求助30
25秒前
拼搏的向雁完成签到 ,获得积分10
29秒前
Akim应助生医工小学生采纳,获得10
30秒前
31秒前
斯文败类应助积极以云采纳,获得10
32秒前
斯文败类应助潘雪娟采纳,获得10
33秒前
小蘑菇应助研猫采纳,获得10
34秒前
kevin完成签到,获得积分10
34秒前
34秒前
饿哭了塞完成签到 ,获得积分10
38秒前
39秒前
39秒前
39秒前
40秒前
大狒狒发布了新的文献求助10
41秒前
44秒前
45秒前
asl完成签到 ,获得积分10
45秒前
pterionGao发布了新的文献求助10
46秒前
46秒前
50秒前
52秒前
52秒前
53秒前
55秒前
57秒前
58秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3680110
求助须知:如何正确求助?哪些是违规求助? 3232659
关于积分的说明 9804155
捐赠科研通 2943890
什么是DOI,文献DOI怎么找? 1614313
邀请新用户注册赠送积分活动 762136
科研通“疑难数据库(出版商)”最低求助积分说明 737255