Automatic registration of dental CT and 3D scanned model using deep split jaw and surface curvature

曲率 人工智能 计算机科学 牙冠(牙科) 体素 点云 计算机视觉 迭代最近点 口腔正畸科 图像配准 预处理器 公制(单位) 叠加 卷积神经网络 数学 医学 几何学 图像(数学) 运营管理 经济
作者
Minchang Kim,Minyoung Chung,Yeong-Gil Shin,Bohyoung Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:233: 107467-107467 被引量:7
标识
DOI:10.1016/j.cmpb.2023.107467
摘要

In the medical field, various image registration applications have been studied. In dentistry, the registration of computed tomography (CT) volume data and 3D optically scanned models is essential for various clinical applications, including orthognathic surgery, implant surgical planning, and augmented reality. Our purpose was to present a fully automatic registration method of dental CT data and 3D scanned models.We use a 2D convolutional neural network to regress a curve splitting the maxilla (i.e., upper jaw) and mandible (i.e., lower jaw) and the points specifying the front and back ends of the crown from the CT data. Using this regressed information, we extract the point cloud and vertices corresponding to the tooth crown from the CT and scanned data, respectively. We introduce a novel metric, called curvature variance of neighbor (CVN), to discriminate between highly fluctuating and smoothly varying regions of the tooth crown. The registration based on CVN enables more accurate fine registration while reducing the effects of metal artifacts. Moreover, the proposed method does not require any preprocessing such as extracting the iso-surface for the tooth crown from the CT data, thereby significantly reducing the computation time.We evaluated the proposed method with the comparison to several promising registration techniques. Our experimental results using three datasets demonstrated that the proposed method exhibited higher registration accuracy (i.e., 2.85, 1.92, and 7.73 times smaller distance errors for individual datasets) and smaller computation time (i.e., 4.12 times faster registration) than one of the state-of-the-art methods. Moreover, the proposed method worked considerably well for partially scanned data, whereas other methods suffered from the unbalancing of information between the CT and scanned data.The proposed method was able to perform fully automatic and highly accurate registration of dental CT data and 3D scanned models, even with severe metal artifacts. In addition, it could achieve fast registration because it did not require any preprocessing for iso-surface reconstruction from the CT data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ehgnix完成签到,获得积分10
刚刚
小秃兄完成签到,获得积分10
1秒前
2秒前
朴实安珊完成签到,获得积分10
4秒前
zhuzhu发布了新的文献求助10
4秒前
这只蜗牛爬的有点慢完成签到,获得积分10
4秒前
7秒前
9秒前
善学以致用应助xsq采纳,获得10
9秒前
11秒前
胡说八道完成签到 ,获得积分10
13秒前
15秒前
123完成签到 ,获得积分10
16秒前
乐乐应助愉快的听枫采纳,获得10
16秒前
kxdxng完成签到 ,获得积分10
16秒前
18秒前
小玄子完成签到,获得积分10
18秒前
19秒前
麦迪文的好朋友完成签到,获得积分10
19秒前
轻松诗霜完成签到 ,获得积分10
20秒前
只道寻常完成签到,获得积分10
20秒前
Master-wang完成签到,获得积分10
20秒前
八九完成签到,获得积分10
23秒前
23秒前
浮云完成签到,获得积分10
24秒前
25秒前
sunny完成签到 ,获得积分10
25秒前
希文完成签到,获得积分10
27秒前
李大龙完成签到,获得积分10
27秒前
tmobiusx发布了新的文献求助30
28秒前
abjz完成签到,获得积分10
28秒前
秋秋完成签到,获得积分10
28秒前
28秒前
葶ting完成签到 ,获得积分10
29秒前
爱笑的傲晴完成签到,获得积分10
29秒前
30秒前
xsq发布了新的文献求助10
30秒前
likw23完成签到 ,获得积分10
30秒前
31秒前
C2750发布了新的文献求助10
31秒前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288540
求助须知:如何正确求助?哪些是违规求助? 2925912
关于积分的说明 8423862
捐赠科研通 2596934
什么是DOI,文献DOI怎么找? 1416812
科研通“疑难数据库(出版商)”最低求助积分说明 659524
邀请新用户注册赠送积分活动 641889