AutoSTG+: An automatic framework to discover the optimal network for spatio-temporal graph prediction

计算机科学 图形 知识图 人工智能 邻接表 领域知识 数据挖掘 机器学习 理论计算机科学 算法
作者
Songyu Ke,Zheyi Pan,Tianfu He,Yuxuan Liang,Junbo Zhang,Yu Zheng
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:318: 103899-103899 被引量:1
标识
DOI:10.1016/j.artint.2023.103899
摘要

Spatio-temporal graphs (STGs) are important structures to describe urban sensory data, e.g., traffic speed and air quality. Predicting over spatio-temporal graphs enables many essential applications in intelligent cities, such as traffic management and environment analysis. Recently, many deep learning models have been proposed for spatio-temporal graph prediction and achieved significant results. However, manually designing neural networks requires rich domain knowledge and heavy expert efforts, making it impractical for real-world deployments. Therefore, we study automated neural architecture search for spatio-temporal graphs, which meets three challenges: 1) how to define search space for capturing complex spatio-temporal correlations; 2) how to jointly model the explicit and implicit relationships between nodes of an STG; and 3) how to learn network weight parameters related to meta graphs of STGs. To tackle these challenges, we propose a novel neural architecture search framework, entitled AutoSTG+, for automated spatio-temporal graph prediction. In our AutoSTG+, spatial graph convolution and temporal convolution operations are adopted in the search space of AutoSTG+ to capture complex spatio-temporal correlations. Besides, we propose to employ the meta-learning technique to learn the adjacency matrices of spatial graph convolution layers and kernels of temporal convolution layers from the meta knowledge of meta graphs. And specifically, such meta-knowledge is learned by graph meta-knowledge learners, which iteratively aggregate knowledge on the attributed graphs and the similarity graphs. Finally, extensive experiments have been conducted on multiple real-world datasets to demonstrate that AutoSTG+ can find effective network architectures and achieve up to about 20% relative improvements compared to human-designed networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信鞯完成签到,获得积分10
刚刚
桑桑完成签到,获得积分10
刚刚
桐桐应助jucy采纳,获得50
刚刚
2秒前
AaronW发布了新的文献求助10
2秒前
qweerrtt完成签到,获得积分10
3秒前
hui发布了新的文献求助10
3秒前
小王发布了新的文献求助10
3秒前
bioinforiver发布了新的文献求助80
3秒前
4秒前
whale完成签到,获得积分10
4秒前
4秒前
hjj发布了新的文献求助10
5秒前
5秒前
双勾玉发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
起司嗯发布了新的文献求助30
7秒前
长虹完成签到,获得积分10
7秒前
8秒前
vision发布了新的文献求助10
9秒前
桑榆非晚完成签到,获得积分10
9秒前
hui完成签到,获得积分20
9秒前
baby的跑男完成签到,获得积分10
9秒前
Faith完成签到,获得积分10
10秒前
10秒前
Mercurius完成签到,获得积分10
11秒前
11秒前
11秒前
ganzhongxin完成签到,获得积分10
11秒前
12356完成签到,获得积分10
11秒前
12秒前
今后应助白华苍松采纳,获得10
12秒前
跳跃乘风发布了新的文献求助20
12秒前
不舍天真发布了新的文献求助20
13秒前
坚强的樱发布了新的文献求助10
13秒前
温暖以蓝发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762