AutoSTG+: An automatic framework to discover the optimal network for spatio-temporal graph prediction

计算机科学 图形 知识图 人工智能 邻接表 领域知识 数据挖掘 机器学习 理论计算机科学 算法
作者
Songyu Ke,Zheyi Pan,Tianfu He,Yuxuan Liang,Junbo Zhang,Yu Zheng
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:318: 103899-103899 被引量:1
标识
DOI:10.1016/j.artint.2023.103899
摘要

Spatio-temporal graphs (STGs) are important structures to describe urban sensory data, e.g., traffic speed and air quality. Predicting over spatio-temporal graphs enables many essential applications in intelligent cities, such as traffic management and environment analysis. Recently, many deep learning models have been proposed for spatio-temporal graph prediction and achieved significant results. However, manually designing neural networks requires rich domain knowledge and heavy expert efforts, making it impractical for real-world deployments. Therefore, we study automated neural architecture search for spatio-temporal graphs, which meets three challenges: 1) how to define search space for capturing complex spatio-temporal correlations; 2) how to jointly model the explicit and implicit relationships between nodes of an STG; and 3) how to learn network weight parameters related to meta graphs of STGs. To tackle these challenges, we propose a novel neural architecture search framework, entitled AutoSTG+, for automated spatio-temporal graph prediction. In our AutoSTG+, spatial graph convolution and temporal convolution operations are adopted in the search space of AutoSTG+ to capture complex spatio-temporal correlations. Besides, we propose to employ the meta-learning technique to learn the adjacency matrices of spatial graph convolution layers and kernels of temporal convolution layers from the meta knowledge of meta graphs. And specifically, such meta-knowledge is learned by graph meta-knowledge learners, which iteratively aggregate knowledge on the attributed graphs and the similarity graphs. Finally, extensive experiments have been conducted on multiple real-world datasets to demonstrate that AutoSTG+ can find effective network architectures and achieve up to about 20% relative improvements compared to human-designed networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yry发布了新的文献求助10
刚刚
MLJ完成签到 ,获得积分10
1秒前
3秒前
3秒前
quzhenzxxx发布了新的文献求助10
5秒前
5秒前
6秒前
chen应助知足且上进采纳,获得20
6秒前
6秒前
大个应助有星星的小路采纳,获得10
8秒前
碧蓝咖啡豆完成签到 ,获得积分10
9秒前
adeno发布了新的文献求助10
9秒前
鳗鱼匕发布了新的文献求助10
10秒前
帅气之槐发布了新的文献求助10
10秒前
ky小白白完成签到 ,获得积分10
11秒前
甜美梦槐发布了新的文献求助10
11秒前
过时的电灯胆完成签到 ,获得积分10
14秒前
16秒前
16秒前
jialin完成签到 ,获得积分10
18秒前
内向的小凡完成签到,获得积分10
19秒前
19秒前
21秒前
领导范儿应助hhhh采纳,获得10
22秒前
ShengzhangLiu发布了新的文献求助10
24秒前
热情饼干发布了新的文献求助10
24秒前
miao完成签到 ,获得积分10
24秒前
xu发布了新的文献求助10
25秒前
任盈盈完成签到,获得积分10
26秒前
缥缈翠霜应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
Anan应助科研通管家采纳,获得20
27秒前
27秒前
27秒前
大模型应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
mmichaell完成签到,获得积分10
28秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350975
求助须知:如何正确求助?哪些是违规求助? 2976530
关于积分的说明 8675444
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664242