离散化
数学
分歧(语言学)
先验与后验
稳健性(进化)
压缩性
正交性
背景(考古学)
应用数学
反向
数学分析
数学优化
控制理论(社会学)
控制(管理)
几何学
计算机科学
机械
地质学
哲学
语言学
物理
认识论
古生物学
生物化学
化学
人工智能
基因
作者
Christian Merdon,Winnifried Wollner
出处
期刊:Siam Journal on Control and Optimization
[Society for Industrial and Applied Mathematics]
日期:2023-02-23
卷期号:61 (1): 342-360
摘要
This paper studies the benefits of pressure-robust discretizations in the scope of optimal control of incompressible flows. Gradient forces that may appear in the data can have a negative impact on the accuracy of state and control and can only be correctly balanced if their -orthogonality onto discretely divergence-free test functions is restored. Perfectly orthogonal divergence-free discretizations or divergence-free reconstructions of these test functions lead to qualitatively better a priori estimates in the sense that the discrete velocities do not depend on the pressures scaled by the inverse of the viscosity. The consequences of the space discretization are also demonstrated and validated in numerical examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI