Quantitative analysis of peripheral retinal defocus checked by multispectral refraction topography in myopia among youth

检影 多光谱图像 折射 主观折射 折射误差 验光服务 光学 眼科 视网膜 眼底(子宫) 医学 地质学 遥感 视力 物理
作者
Qing Zhao,Xiaosong Du,Ye Yang,Yali Zhou,Xinxin Zhao,Xuebing Shan,Yuxuan Meng,Meng Zhang
出处
期刊:Chinese Medical Journal [Lippincott Williams & Wilkins]
被引量:7
标识
DOI:10.1097/cm9.0000000000002606
摘要

To the Editor: Myopia is the most common refractive error and a major reason for visual impairment. The prevalence of myopia is increasing worldwide and is particularly high in Asian countries. It affects 80% to 90% of young people in some parts of East and Southeast Asia.[1] High myopia, which is more than −6.00 D, increases the possibility of visual impairment due to ocular complications caused by extended axial length (AL), which include posterior uveioma, retinal detachment, choroidal new vascularization, and so on. Thus, the prevention and control of myopia is a difficult and important public health issue that has attracted great attention from the World Health Organization and the Chinese government. The formation of myopia is closely related to the retinal defocal state and AL. Methods to evaluate eccentric refractive errors mainly include subjective eccentric refraction, wavefront measurements with an AHS sensor, streak retinoscopy, and photo refraction with a power refractor.[2] However, these methods have high requirements for patient cooperation, and they are time consuming and difficult to use in clinical practice. More importantly, they can only detect a small area of the retina and cannot accurately detect the peripheral defocus of each region of the retina. Multispectral refraction topography (MRT) is a new instrument using multispectral imaging. The technology collects ocular fundus images, which are compared and analyzed by a specific computer algorithm with single spectral light of different wavelengths. Finally, it calculates the actual refractive value of each pixel point. MRT can detect the refraction of each part of the retina within a range of 45° at the posterior pole of the retina. Its accuracy and repeatability have been validated. Therefore, this study measures the peripheral defocus of different degrees of myopia checked by MRT in young students and aims to explore the relationship between retinal defocus and myopia. Target population and eye examinations. Our present research was a descriptive cross-sectional study, and Ethical Approval was obtained from the Ethics Committee of the Fourth Hospital of Hebei Medical University. Written informed consent was obtained from all participants. We recorded patients presenting for visual problems in an ophthalmology outpatient department of our hospital from December 1, 2021, to March 31, 2022. The inclusion criteria were as follows: (1) ages between 6 to 18 years, (2) with a best corrected visual acuity of 20/20 or better, and (3) agreement to participate and provide informed consent. The exclusion criteria were as follows: (1) acute or chronic ocular diseases, (2) a history of corneal contact lenses, such as orthokeratology lenses, and (3) a history of ocular diseases or previous ocular surgery that might influence refraction or AL. The refractive errors of all eyes were measured by an autorefractometer (AR-360A, NIDEK Co. Ltd., Japan) after full cycloplegia, 30 min after three drops of compound tropicamide 0.5% and phenylephrine 0.5% (SINQI Pharmaceutical Co., Ltd., Shenyang, China) with an interval of 5 min so that pupils were dilated and the response to light disappeared. We collected the mean of three consecutive autorefraction results conducted as the refractive error value, which is presented as sphere (S) and cylinder (C) measurements. The final refractive error was recorded as the spherical equivalent (SE), and the SE value was the basis for grouping. The equation was SE = S + C/2. The ALs were measured by IOL Master Biometry (Master 2000, Zeiss Co., Germany) under natural light before pupil dilation. We also collected the mean of three measurements as the final result. Retinal defocus was measured by MRT (version 1.0.5T05C; Thondar, Inc.). All examinations were performed by the same well-trained experienced optometrist. Statistical analysis was performed using SPSS 26.0 (SPSS Inc., Chicago, IL, USA). Normally distributed data are expressed as the mean ± standard deviation, and comparisons between groups were analyzed using one-way analysis of variance. A value of P < 0.05 indicated statistical significance. In this study, 256 primary and secondary school students (512 eyes) presented to the optometry clinic of our hospital for the diminution of vision or their concerns about it. There were 98 boys and 158 girls aged 6 to 18 years. Of the 512 eyes, 74 had emmetropia (EM, 0.5 D < SE < +0.5 D), 246 had low myopia (LM, 3.0 D < SE ≤ −0.5 D), 122 had moderate myopia (MM, 6.0 D < SE ≤ −3.0 D), and 70 had high myopia (HM, SE ≥ −6.0 D). It is noteworthy that the 74 opposite eyes of those with EM included 16 eyes with EM, 38 eyes with LM, and four eyes with MM. The ages, sex, and values of AL for the four groups are presented in Supplementary Table 1, https://links.lww.com/CM9/B437. The refraction difference values (RDVs) of the four groups are shown in Supplementary Table 2, https://links.lww.com/CM9/B437. According to the values, we found that the retinal peripheral refractive error increased with increasing eccentricity. Eyes with moderate and high myopia presented relative hyperopia. The deeper the degree of myopia is, the greater the hyperopia. There was a significant difference in the value of total refraction difference value (TRDV) between group EM (0.006 ± 0.503) and group MM (0.223 ± 0.475), group LM (0.040 ± 0.533), and group MM (0.223 ± 0.475) (P < 0.05) [Figure 1A]. In the range of RDV-15, there was a significant difference between group EM (−0.073 ± 0.065) and group HM (−0.010 ± 0.176); group MM (−0.061 ± 0.076) and group HM (−0.010 ± 0.176) (P < 0.05) [Figure 1B]. In the range of RDV-30, there was a significant difference between group EM (−0.102 ± 0.199) and group MM (−0.019 ± 0.194); group EM (−0.102 ± 0.199) and group HM (0.038 ± 0.242) (P < 0.05) [Figure 1C]. In the range of RDV-45, there was a significant difference between group EM (0.013 ± 0.396) and group MM (0.168 ± 0.381); group LM (0.056 ± 0.414) and group MM (0.168 ± 0.381) (P < 0.05) [Figure 1D]. In the RDV-nasal (RDV-N) position, there was a significant difference between group LM (0.336 ± 0.763) and group MM (0.566 ± 0.710) (P < 0.05) [Figure 1E]. In the RDV-temporal (RDV-T) position, there was no significant difference among the four groups [Figure 1F]. In the RDV-superior (RDV-S) position, there was a significant difference between group EM (−0.715 ± 0.755) and group MM (−0.346 ± 0.818); group EM (−0.715 ± 0.755) and group HM (−0.075 ± 0.978); and group LM (−0.491 ± 0.852) and group HM (−0.075 ± 0.978) (P < 0.05) [Figure 1G]. In the RDV-inferior (RDV-I) position, there was a significant difference between group LM (0.198 ± 0.940) and group MM (0.449 ± 0.639) (P < 0.05) [Figure 1H].Figure 1: The TRDV (A), RDV-15 (B), RVD-30 (C), RVD-N (E), RVD-T (F), RDV-S (G) and RDV-I (H) of different eccentricities and quadrants in four groups. EM: Emmetropia; HM: High myopia; LM: Low myopia; MM: Middle myopia; RDV: Refraction difference value; RDV-I: RDV-inferior; RDV-N: RDV-nasal; RDV-S: RDV-superior; RDV-T: RDV-temporal; TRDV: Total refraction difference value.The results also showed that there was a significant difference in AL among the four groups (P < 0.05) [Supplementary Figure 1A, https://links.lww.com/CM9/B437]. Furthermore, the Pearson correlation analysis indicated an obvious negative correlation of SE with AL (r = − 0.697, P < 0.05) [Supplementary Figure 1B, https://links.lww.com/CM9/B437]. Additionally, it indicated a negative correlation of SE with TRDV (r = − 0.125, P < 0.05), RDV-30 (r = − 0.097, P < 0.05), RDV-45 (r = − 0.096, P < 0.05), and RDV-S (r = − 0.166, P < 0.05). It indicated no significant correlation of SE with RDV-15 (r = − 0.026, P = 0.580), RDV-I (r = − 0.048, P = 0.307), RDV-N (r = − 0.054, P = 0.247), and RDV-T (r = − 0.052, P = 0.270). In our study, all of the students had a myopia defocus within 15° eccentricity. The retina defocus of the fovea or the posterior region has less influence on the development of myopia. Students with high myopia presented an obvious hyperopia defocus at 30° and 45° eccentricity, whereas students with low and MM had relative hyperopia at 45° eccentricity. Chen et al[3] compared the peripheral refractive errors in patients with different refractive degrees and concluded that the hyperopic shift was greater in MM than in LM but was similar in EM and LM. Notably, eyes with EM had mild hyperopia at 45° eccentricity in this study. After consulting the literature, Mutti et al[4] found that peripheral hyperopia defocus in children appears two years before the onset of myopia, indicating that it may appear in EM. To a certain degree, it confirmed that peripheral hyperopia defocus has predictive significance for the occurrence of myopia. From the perspective of the four quadrants, we found that all of the eyes in our study showed myopic defocus in the superior retina and obvious hyperopic defocus in other areas. Moreover, the higher the degree of myopia is, the smaller the amount of myopic defocus. In addition, the AL is significantly longer with increasing myopic refraction. This finding indicates that the change in the superior retina is positively correlated with the growth of AL and the decrease in myopic defocus. Shen et al[5] compared the peripheral refractive errors in horizontal, vertical, and two diagonal meridians. They found that the hyperopic shift was greater toward the inferior visual field than toward the superior visual field in the MM and HM groups. Additionally, Gregor F. Schmid's[6] study found that the steepening of the relative peripheral eye length changed the most in the superior retina. The specific mechanism between peripheral refractive error and myopia remains controversial. Two main views are popular: some insist that peripheral hyperopic defocus is an important trigger for the development of axial myopia, and others argue that peripheral hyperopia may be a result of eye growth. Our study demonstrated that the retina peripheral refraction of the eyes varied from different eccentricities and quadrants. There was a growing trend with the increase in the degree of myopia in the range of RDV-30 and RDV-45. The RDV in the superior retina increased the most compared with that in the other quadrants. In addition, the degrees of myopia negatively correlated with AL, TRDV, RDV-30, RDV-45, and RDV-S. Therefore, the peripheral refraction of 30° and 45° eccentricities and the superior retina may be closely related to the onset and progression of myopia. However, the sample size of our study was relatively small, and relatively few students had high myopia, since the subjects mainly came from the nearby primary and middle schools. Therefore, conclusions need a larger size and long-term follow-up study to be confirmed. Conflicts of interest None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
myq完成签到 ,获得积分10
12秒前
16秒前
默默灭绝完成签到 ,获得积分10
21秒前
22秒前
怕孤独的香菇完成签到 ,获得积分10
26秒前
西山菩提完成签到,获得积分10
26秒前
Ava应助三笠采纳,获得10
38秒前
啊嚯完成签到,获得积分10
39秒前
火星上惜天完成签到 ,获得积分10
40秒前
甜乎贝贝完成签到 ,获得积分10
45秒前
桐桐应助猪肉水饺采纳,获得10
47秒前
土豆炖大锅完成签到 ,获得积分10
53秒前
56秒前
姆姆没买完成签到 ,获得积分10
59秒前
zyb完成签到 ,获得积分10
1分钟前
猪肉水饺发布了新的文献求助10
1分钟前
白蓝红完成签到,获得积分10
1分钟前
端庄的萝完成签到,获得积分10
1分钟前
魔幻的妖丽完成签到 ,获得积分10
1分钟前
郑雅柔完成签到 ,获得积分0
1分钟前
1分钟前
科研小石完成签到 ,获得积分10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
猪肉水饺完成签到,获得积分10
1分钟前
lisa完成签到 ,获得积分10
1分钟前
lzq完成签到 ,获得积分10
1分钟前
滴滴哒完成签到,获得积分10
1分钟前
喵喵7完成签到 ,获得积分10
1分钟前
牛马完成签到,获得积分10
1分钟前
谨慎鹏涛完成签到 ,获得积分10
1分钟前
Jessie完成签到 ,获得积分10
1分钟前
1分钟前
丽丽完成签到,获得积分10
2分钟前
2分钟前
坐宝马吃地瓜完成签到 ,获得积分10
2分钟前
2分钟前
烟花应助拾陆采纳,获得10
2分钟前
伶俐绿柏完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990836
求助须知:如何正确求助?哪些是违规求助? 3532241
关于积分的说明 11256631
捐赠科研通 3271100
什么是DOI,文献DOI怎么找? 1805313
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809236