How Nucleic Acids Cope with High Temperature

核酸 核糖核酸 DNA 生物化学 超嗜热菌 核糖核蛋白 生物分子 化学 多核苷酸 核酸结构 核酸变性 生物 生物物理学 古细菌 基因
作者
Henri Grosjean,Tairo Oshima
出处
期刊:ASM Press eBooks [ASM Press]
卷期号:: 39-56 被引量:20
标识
DOI:10.1128/9781555815813.ch4
摘要

This chapter discusses the question of coping up of the nucleic acids with high temperature at the polynucleotide level—RNA, DNA, and their ribonucleoprotein derivatives (RNP/DNP). When nucleic acids are heated in aqueous solution, two types of phenomena take place: denaturation of their architecture and chemical degradation of their building blocks. In vivo, the half-lives of both RNA and DNA of thermophilic organisms are usually longer than that estimated in vitro, attesting to cellular strategies protecting the nucleic acids against the deleterious effects of heat. Despite the susceptibility of certain modified bases and of the ribonucleotide chain to thermal degradation, most naturally occurring tRNAs (especially those from hyperthermophilic organisms) appear fairly resistant to heat denaturation. Despite the intrinsic potentiality of nucleic acids to degrade at elevated temperatures, many hyperthermophiles can survive at very high temperatures approaching or even surpassing the boiling point of water. The majority of stable cellular RNAs, such as tRNA and rRNA molecules, contain a variety of modified nucleosides. Stabilizing strategies of RNAs and DNAs may be classified into three major categories: (i) those which are intrinsic to the chemical structures of the nucleic acids; (ii) those which are dependent on extrinsic interactions with other biomolecules; and (iii) those which are dependent on a battery of enzymes for detecting and repairing the DNA damage or to constantly renew functional RNA molecules. Genetic approach using mutant strains mutated in one or more biomolecules supposedly involved directly or indirectly in stabilization of nucleic acids should be more systematically used.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆ok发布了新的文献求助10
刚刚
JamesPei应助木木采纳,获得10
1秒前
CodeCraft应助盖饭不加辣采纳,获得10
1秒前
2秒前
五颜六色的白完成签到,获得积分10
2秒前
sb发布了新的文献求助10
3秒前
哈哈发布了新的文献求助30
3秒前
小马甲应助汉堡小屁采纳,获得10
4秒前
赘婿应助zly采纳,获得10
4秒前
我爱学习完成签到,获得积分10
4秒前
jojojojojo完成签到,获得积分10
4秒前
朴实的青雪完成签到,获得积分10
5秒前
5秒前
Andy1409发布了新的文献求助10
6秒前
小马甲应助zhu采纳,获得10
6秒前
Krim完成签到 ,获得积分10
7秒前
Monica完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
psycho发布了新的文献求助10
9秒前
liz完成签到,获得积分10
9秒前
李爱国应助陆ok采纳,获得10
9秒前
Andy1409完成签到,获得积分10
11秒前
卓疾发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
14秒前
SciGPT应助拥挤而独行采纳,获得10
14秒前
14秒前
cc完成签到,获得积分0
14秒前
15秒前
liz发布了新的文献求助10
16秒前
16秒前
17秒前
怅神霄而避光完成签到,获得积分10
17秒前
shawn发布了新的文献求助10
17秒前
意忆完成签到,获得积分10
17秒前
大麦迪发布了新的文献求助10
18秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083756
求助须知:如何正确求助?哪些是违规求助? 2737102
关于积分的说明 7543295
捐赠科研通 2386458
什么是DOI,文献DOI怎么找? 1265484
科研通“疑难数据库(出版商)”最低求助积分说明 613100
版权声明 597951