亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization of Migration Cost for Network Function Virtualization Replacement

计算机科学 虚拟网络 计算机网络 服务质量 分布式计算 软件部署 虚拟化 节点(物理) 资源配置 操作系统 云计算 工程类 结构工程
作者
Fadia Shoura,Ammar Gharaibeh,Sahel Alouneh
标识
DOI:10.1109/acit50332.2020.9300112
摘要

Today's networks are concerned about making the control of communication flexible and improving the existing management systems in such a manner that reduces the Capital expenditures (CAPEX) and operating expenses (OPEX), through reducing equipment costs and energy efficiency. Along with the benefits of decreasing the time to promote new services to the clients, service providers' attention has gradually moved to Network Function Virtualization (NFV), which is a potential technology decoupling network functionalities from hardware and is a promise of high performance service provision with optimizing resource utilization across various infrastructures. However, to simultaneously achieve these goals, sometimes it is necessary to instantiate a new function depending on the traffic pattern of high-bandwidth characteristics and Quality of Service (QoS) measures. Due to the limited resources at the node, other functions in the node may need to be migrated to other nodes in order to provide resources for the new functions. Existing works related to the Virtual Network Function (VNF) deployment and migration usually focus on proposing new deployment strategies and migration mechanisms. However, reducing migration cost restricted to memory, CPU, and bandwidth capacities is not considered in those studies. In this work, the problem of virtual network functions migration is formulated as an Integer Linear Program (ILP) with the objective of minimizing the migration cost while satisfying computing and network resource capacities constraints and selecting the minimum cost path from the source to the destination node. Since the ILP is NP-complete, we propose a greedy minimum migration cost (GMMC) algorithm. Simulation results show that the proposed GMMC algorithm can reduce the total migration cost by up to 61% and the number of migrations by up to 52% when compared to the state-of-the-art schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助小黑妞采纳,获得10
2秒前
6秒前
司空以蕊完成签到 ,获得积分10
6秒前
8秒前
10秒前
12秒前
ylh发布了新的文献求助10
13秒前
勤恳八宝粥完成签到 ,获得积分10
14秒前
抹茶发布了新的文献求助10
16秒前
yukky发布了新的文献求助10
19秒前
34秒前
36秒前
不言而喻应助Marciu33采纳,获得10
36秒前
36秒前
123发布了新的文献求助10
37秒前
魔幻的芳完成签到,获得积分10
37秒前
41秒前
火星上的宝马完成签到,获得积分10
41秒前
41秒前
41秒前
俏皮跳跳糖完成签到,获得积分10
42秒前
悲凉的忆南完成签到,获得积分10
44秒前
桃子e发布了新的文献求助10
45秒前
xiaxiao完成签到,获得积分0
46秒前
huan发布了新的文献求助10
47秒前
陈旧完成签到,获得积分10
47秒前
欣欣子完成签到,获得积分10
51秒前
52秒前
sunstar完成签到,获得积分10
54秒前
72219发布了新的文献求助10
56秒前
yxl完成签到,获得积分10
58秒前
Jasper应助huan采纳,获得10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
烟消云散完成签到,获得积分10
1分钟前
cc完成签到,获得积分20
1分钟前
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
FashionBoy应助抹茶采纳,获得10
1分钟前
钱百川发布了新的文献求助10
1分钟前
lsc完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780200
求助须知:如何正确求助?哪些是违规求助? 5653166
关于积分的说明 15452863
捐赠科研通 4910949
什么是DOI,文献DOI怎么找? 2643155
邀请新用户注册赠送积分活动 1590810
关于科研通互助平台的介绍 1545294