Optimization of Migration Cost for Network Function Virtualization Replacement

计算机科学 虚拟网络 计算机网络 服务质量 分布式计算 软件部署 虚拟化 节点(物理) 资源配置 操作系统 云计算 工程类 结构工程
作者
Fadia Shoura,Ammar Gharaibeh,Sahel Alouneh
标识
DOI:10.1109/acit50332.2020.9300112
摘要

Today's networks are concerned about making the control of communication flexible and improving the existing management systems in such a manner that reduces the Capital expenditures (CAPEX) and operating expenses (OPEX), through reducing equipment costs and energy efficiency. Along with the benefits of decreasing the time to promote new services to the clients, service providers' attention has gradually moved to Network Function Virtualization (NFV), which is a potential technology decoupling network functionalities from hardware and is a promise of high performance service provision with optimizing resource utilization across various infrastructures. However, to simultaneously achieve these goals, sometimes it is necessary to instantiate a new function depending on the traffic pattern of high-bandwidth characteristics and Quality of Service (QoS) measures. Due to the limited resources at the node, other functions in the node may need to be migrated to other nodes in order to provide resources for the new functions. Existing works related to the Virtual Network Function (VNF) deployment and migration usually focus on proposing new deployment strategies and migration mechanisms. However, reducing migration cost restricted to memory, CPU, and bandwidth capacities is not considered in those studies. In this work, the problem of virtual network functions migration is formulated as an Integer Linear Program (ILP) with the objective of minimizing the migration cost while satisfying computing and network resource capacities constraints and selecting the minimum cost path from the source to the destination node. Since the ILP is NP-complete, we propose a greedy minimum migration cost (GMMC) algorithm. Simulation results show that the proposed GMMC algorithm can reduce the total migration cost by up to 61% and the number of migrations by up to 52% when compared to the state-of-the-art schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖淑美完成签到 ,获得积分10
1秒前
比蓝色更深完成签到,获得积分10
1秒前
材化小将军完成签到,获得积分10
1秒前
田様应助科研通管家采纳,获得50
2秒前
Leon应助科研通管家采纳,获得30
2秒前
华仔应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得30
2秒前
kk完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
sutharsons应助科研通管家采纳,获得30
2秒前
星河完成签到,获得积分10
5秒前
SDNUDRUG完成签到,获得积分10
5秒前
Rex完成签到,获得积分20
5秒前
LU41完成签到,获得积分10
5秒前
okbasf完成签到,获得积分10
5秒前
平常的镜子应助dingning采纳,获得20
7秒前
8秒前
完美世界应助迷路以筠采纳,获得10
11秒前
momo完成签到,获得积分10
12秒前
12秒前
lewis发布了新的文献求助10
13秒前
浪迹天涯应助求助采纳,获得10
13秒前
六月发布了新的文献求助10
13秒前
乌梅不乌发布了新的文献求助10
13秒前
八二力完成签到 ,获得积分10
13秒前
13秒前
18秒前
一夜很静应助迷人素采纳,获得10
19秒前
19秒前
耍酷的夏云应助SV采纳,获得10
21秒前
六月完成签到,获得积分10
25秒前
Anquan发布了新的文献求助10
25秒前
善学以致用应助好难啊采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851