图层(电子)
相(物质)
计算机科学
物理
化学
量子力学
有机化学
作者
Shiqi Yang,Xiaolong Xu,Yaozheng Zhu,Ruirui Niu,Chunqiang Xu,Yuxuan Peng,Xing Cheng,Xionghui Jia,Yuan Huang,Xiaofeng Xu,Jianming Lü,Yu Ye
标识
DOI:10.1103/physrevx.11.011003
摘要
The intrinsic magnetic layered topological insulator MnBi2Te4 with nontrivial topological properties and magnetic order has become a promising system for exploring exotic quantum phenomena such as quantum anomalous Hall effect. However, the layer-dependent magnetism of MnBi2Te4, which is fundamental and crucial for further exploration of quantum phenomena in this system, remains elusive. Here, we use polar reflective magnetic circular dichroism spectroscopy, combined with theoretical calculations, to obtain an in-depth understanding of the layer-dependent magnetic properties in MnBi2Te4. The magnetic behavior of MnBi2Te4 exhibits evident odd-even layer-number effect, i.e. the oscillations of the coercivity of the hysteresis loop (at {\mu}0Hc) and the spin-flop transition (at {\mu}0H1), concerning the Zeeman energy and magnetic anisotropy energy. In the even-number septuple layers, an anomalous magnetic hysteresis loop is observed, which is attributed to the thickness-independent surface-related magnetization. Through the linear-chain model, we can clarify the odd-even effect of the spin-flop field and determine the evolution of magnetic states under the external magnetic field. The mean-field method also allows us to trace the experimentally observed magnetic phase diagrams to the magnetic fields, layer numbers and especially, temperature. Overall, by harnessing the unusual layer-dependent magnetic properties, our work paves the way for further study of quantum properties of MnBi2Te4.
科研通智能强力驱动
Strongly Powered by AbleSci AI