Bond Valence Pathway Analyzer—An Automatic Rapid Screening Tool for Fast Ion Conductors within softBV

频谱分析仪 材料科学 价(化学) 快离子导体 掺杂剂 纳米技术 化学 计算机科学 电解质 光电子学 电极 兴奋剂 电信 物理化学 有机化学
作者
Lee Loong Wong,Kia Chai Phuah,Ruoyu Dai,Haomin Chen,Wee Chew,Stefan Adams
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:33 (2): 625-641 被引量:203
标识
DOI:10.1021/acs.chemmater.0c03893
摘要

Solid-state fast ionic conductors are of great interest due to their application potential enabling the development of safer high-performance energy and conversion systems ranging from batteries through supercapacitors to fuel cells, electrolyzers, and novel neuromorphic devices. However, identifying fast ion conductors has remained a slow trial-and-error search process. High-throughput computational screening methods such as our bond valence site energy method can significantly accelerate this materials design, but their implementation not only needs to be computationally efficient and dependable but also simple to be used by experimentalists in order to find widespread usage for guiding experimental efforts to promising classes of candidate materials. To bridge the current gap between computational method developers and application-oriented users, we combine the computationally low-cost bond valence site energy calculations in our softBV software tool using a new automated pathway analysis tool—the bond valence pathway analyzer (BVPA). The integration of BVPA gives rapid comprehensive access to and simplifies the visualization of the desired information on the characteristics of ion transport properties in candidate materials. Examples for the main application of identifying suitable structure types for fast ion transport as solid electrolytes or mixed conducting electrode materials with high-rate capability are given. A new dopant predictor further simplifies defect engineering of the candidate systems by automatically suggesting suitable substitutional dopants for each site in the structure based on a new machine-learned approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
、、、发布了新的文献求助10
刚刚
岩追研发布了新的文献求助10
1秒前
跃May发布了新的文献求助10
2秒前
2秒前
fanny发布了新的文献求助30
2秒前
2秒前
3秒前
奋斗小蜜蜂完成签到,获得积分10
3秒前
4秒前
hqy完成签到,获得积分20
5秒前
领导范儿应助charm12采纳,获得10
5秒前
感动又晴完成签到,获得积分10
5秒前
6秒前
苦难诗社发布了新的文献求助10
6秒前
6秒前
yatou5651发布了新的文献求助10
7秒前
7秒前
许子健发布了新的文献求助10
8秒前
nini发布了新的文献求助10
8秒前
8秒前
开朗的山彤应助张阿童木采纳,获得10
8秒前
追寻依风发布了新的文献求助10
8秒前
隐形曼青应助雾昂采纳,获得10
8秒前
9秒前
betsy发布了新的文献求助10
10秒前
wuhuhu关注了科研通微信公众号
10秒前
eAN完成签到,获得积分10
10秒前
zl完成签到,获得积分10
10秒前
桐桐应助yyyhhh采纳,获得10
10秒前
11秒前
亓大大发布了新的文献求助10
11秒前
香蕉觅云应助反方向的钟采纳,获得30
11秒前
hqy发布了新的文献求助20
11秒前
852应助Gotyababy采纳,获得10
11秒前
seven发布了新的文献求助10
12秒前
PAN完成签到,获得积分10
12秒前
13秒前
香蕉觅云应助Han采纳,获得10
13秒前
太阳发布了新的文献求助10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646