Capturing Travel Mode Adoption in Designing On-Demand Multimodal Transit Systems

双层优化 计算机科学 过境(卫星) 运筹学 一致性(知识库) 集合(抽象数据类型) 模式(计算机接口) 运输工程 数学优化 公共交通 最优化问题 工程类 数学 人工智能 算法 操作系统 程序设计语言
作者
Beste Basciftci,Pascal Van Hentenryck
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (2): 351-375 被引量:18
标识
DOI:10.1287/trsc.2022.1184
摘要

This paper studies how to integrate rider mode preferences into the design of on-demand multimodal transit systems (ODMTSs). It is motivated by a common worry in transit agencies that an ODMTS may be poorly designed if the latent demand, that is, new riders adopting the system, is not captured. This paper proposes a bilevel optimization model to address this challenge, in which the leader problem determines the ODMTS design, and the follower problems identify the most cost efficient and convenient route for riders under the chosen design. The leader model contains a choice model for every potential rider that determines whether the rider adopts the ODMTS given her proposed route. To solve the bilevel optimization model, the paper proposes an exact decomposition method that includes Benders optimal cuts and no-good cuts to ensure the consistency of the rider choices in the leader and follower problems. Moreover, to improve computational efficiency, the paper proposes upper and lower bounds on trip durations for the follower problems, valid inequalities that strengthen the no-good cuts, and approaches to reduce the problem size with problem-specific preprocessing techniques. The proposed method is validated using an extensive computational study on a real data set from the Ann Arbor Area Transportation Authority, the transit agency for the broader Ann Arbor and Ypsilanti region in Michigan. The study considers the impact of a number of factors, including the price of on-demand shuttles, the number of hubs, and access to transit systems criteria. The designed ODMTSs feature high adoption rates and significantly shorter trip durations compared with the existing transit system and highlight the benefits of ensuring access for low-income riders. Finally, the computational study demonstrates the efficiency of the decomposition method for the case study and the benefits of computational enhancements that improve the baseline method by several orders of magnitude. Funding: This research was partly supported by National Science Foundation [Leap HI Proposal NSF-1854684] and the Department of Energy [Research Award 7F-30154].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助XXX采纳,获得10
1秒前
思源应助清风采纳,获得10
1秒前
热心市民小红花给热心市民小红花的求助进行了留言
1秒前
量子星尘发布了新的文献求助10
2秒前
欧克欧克发布了新的文献求助10
2秒前
lin完成签到,获得积分10
3秒前
dudududu完成签到,获得积分10
3秒前
4秒前
Richard发布了新的文献求助10
4秒前
星辰大海应助冰苏打采纳,获得10
4秒前
积极诗霜完成签到,获得积分10
4秒前
chx123发布了新的文献求助10
5秒前
我是老大应助qiaoyun采纳,获得10
5秒前
刘文静完成签到,获得积分10
6秒前
尽落发布了新的文献求助10
7秒前
7秒前
8秒前
永远永远完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
合适的乐儿完成签到,获得积分10
10秒前
sswbzh应助风清扬采纳,获得50
11秒前
11秒前
11秒前
正念完成签到,获得积分10
12秒前
Orange应助心灵美的小伙采纳,获得10
12秒前
12秒前
12秒前
12秒前
寒水沉烟完成签到,获得积分10
12秒前
12秒前
充电宝应助九九采纳,获得10
13秒前
13秒前
怕黑寻双完成签到,获得积分10
13秒前
13秒前
13秒前
orixero应助王硕硕采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
llhh2024发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894