Capturing Travel Mode Adoption in Designing On-Demand Multimodal Transit Systems

双层优化 计算机科学 过境(卫星) 运筹学 一致性(知识库) 集合(抽象数据类型) 模式(计算机接口) 运输工程 数学优化 公共交通 最优化问题 工程类 数学 人工智能 算法 操作系统 程序设计语言
作者
Beste Basciftci,Pascal Van Hentenryck
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (2): 351-375 被引量:18
标识
DOI:10.1287/trsc.2022.1184
摘要

This paper studies how to integrate rider mode preferences into the design of on-demand multimodal transit systems (ODMTSs). It is motivated by a common worry in transit agencies that an ODMTS may be poorly designed if the latent demand, that is, new riders adopting the system, is not captured. This paper proposes a bilevel optimization model to address this challenge, in which the leader problem determines the ODMTS design, and the follower problems identify the most cost efficient and convenient route for riders under the chosen design. The leader model contains a choice model for every potential rider that determines whether the rider adopts the ODMTS given her proposed route. To solve the bilevel optimization model, the paper proposes an exact decomposition method that includes Benders optimal cuts and no-good cuts to ensure the consistency of the rider choices in the leader and follower problems. Moreover, to improve computational efficiency, the paper proposes upper and lower bounds on trip durations for the follower problems, valid inequalities that strengthen the no-good cuts, and approaches to reduce the problem size with problem-specific preprocessing techniques. The proposed method is validated using an extensive computational study on a real data set from the Ann Arbor Area Transportation Authority, the transit agency for the broader Ann Arbor and Ypsilanti region in Michigan. The study considers the impact of a number of factors, including the price of on-demand shuttles, the number of hubs, and access to transit systems criteria. The designed ODMTSs feature high adoption rates and significantly shorter trip durations compared with the existing transit system and highlight the benefits of ensuring access for low-income riders. Finally, the computational study demonstrates the efficiency of the decomposition method for the case study and the benefits of computational enhancements that improve the baseline method by several orders of magnitude. Funding: This research was partly supported by National Science Foundation [Leap HI Proposal NSF-1854684] and the Department of Energy [Research Award 7F-30154].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花完成签到,获得积分10
1秒前
赤恩完成签到,获得积分10
1秒前
1秒前
哈哈哈哈发布了新的文献求助10
1秒前
Ann完成签到,获得积分10
2秒前
搜集达人应助水龙吟采纳,获得10
4秒前
4秒前
英俊的铭应助香蕉梨愁采纳,获得10
5秒前
6秒前
落后的又蓝完成签到,获得积分10
6秒前
胥钦凤发布了新的文献求助10
6秒前
万能图书馆应助弦弦弦采纳,获得10
7秒前
8秒前
9秒前
9秒前
小胡发布了新的文献求助10
10秒前
12秒前
chen完成签到,获得积分10
12秒前
无情向梦发布了新的文献求助10
15秒前
不喜发布了新的文献求助10
15秒前
xYueea完成签到,获得积分10
16秒前
落寞臻发布了新的文献求助10
17秒前
17秒前
天南完成签到,获得积分10
19秒前
20秒前
韩soso完成签到,获得积分10
20秒前
21秒前
tuzhifengyin完成签到,获得积分10
23秒前
傲娇的笑白完成签到 ,获得积分10
23秒前
23秒前
de发布了新的文献求助10
23秒前
24秒前
didikaka发布了新的文献求助10
24秒前
25秒前
Song0558发布了新的文献求助10
26秒前
面包发布了新的文献求助10
28秒前
张潆心发布了新的文献求助10
29秒前
six完成签到,获得积分10
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511