Is It Possible to Measure the Amount of the SMAS Face Lift According to Facial Vectors?

Lift(数据挖掘) 眉毛 医学 面部肌肉 颧弓 解剖 投影(关系代数) 面神经 人工智能 口腔正畸科 计算机科学 外科 算法 数据挖掘
作者
Marcus Vinícius Jardini Barbosa,Tiago Bianchi,Fábio Xerfan Nahas,Lydia M. Ferreira
出处
期刊:Plastic and Reconstructive Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:147 (3): 570e-571e
标识
DOI:10.1097/prs.0000000000007662
摘要

Since the initial description of the importance of the superficial musculoaponeurotic system (SMAS) in the face-lift procedure, surgical treatment of the facial aging through SMAS face lift evolved to be less invasive, mainly because of potential temporary or permanent facial nerve damage1 with disturbance of the normal function of facial muscles, which could require reconstruction such as the transplantation of subunits of the latissimus dorsi muscle.2 When treatment of the SMAS involves plication, there is a consensus that the SMAS face lift must be performed superiorly and posteriorly; regardless of the technical choice, the concept of the facial vectors is well established.1 The main superior vectors are performed parallel to the body of the mandible, at the level of the projection of the zygomatic arch, and the posterior ones are performed along the projection of the ramus of the mandible. The convergence of these two vectors generally occurs at the preauricular area in the level of projection of the root of the helix, resulting in an inverted-L shape or a 7 shape with an oblique final vector.3 Considering all of the different types of faces and deformities, the distance between the two horizontal and vertical vectors and, consequently, the amount of SMAS lift, will vary according to each patient.1,3 Real et al. described a technique of frontotemporal minilifting using the concept of facial vectors and, based on anatomical points, quantified the amount of eyebrow tail suspension.4 For the past 10 years, the preferred technique for face lift in our group has been the plication of the SMAS, with its imbrication to return volume to the malar area. After skin dissection, the SMAS is marked as described above with two parallel 7-shaped figures, according to the maximum traction possible by both main vectors (Fig. 1).Fig. 1.: Vectors of the two parallel 7-shaped figures at the third middle of the face (arrow indicates the oblique final vector according to the maximum traction of the SMAS).Considering the theory of vector sum, it can be noted that the arrangement of the vectors as two 7-shaped figures enables calculation of the difference between the areas of each one, through the parallelogram law. The so-called parallelogram law gives the rule for vector addition of two or more vectors. For two vectors a and b, the vector sum a + b is obtained by placing them head to tail and drawing the vector from the free tail to the free head. In Cartesian coordinates, vector addition can be performed simply by adding the corresponding components of the vectors; therefore, A = (a1, a2, …, an) and B = (b1, b2, …, bn).5 Therefore, this rule could be applied when there is an overlapping of two geometric figures (Fig. 2). In theory, this numeric value could direct surgeons to estimate the amount of SMAS traction in each patient and then evaluate the effectiveness of the procedure. This idea has been developed and incorporated in the routine of our face-lifting procedures and the results will be presented soon.Fig. 2.: Overlapping of the two geometric figures according to the parallelogram law. The difference between their areas will predict the total amount of lifting.DISCLOSURE The authors declare that they have no commercial interest in the subject of study or in the source of any financial or material support. Marcus Vinicius J. Barbosa, M.D., Ph.D.School of MedicineMorphofunctional LaboratoryMorphofunctional Laboratory Tiago Bianchi, Ph.D.IBM Fabio X. Nahas, Ph.D., M.B.A.Lydia M. Ferreira, M.D., Ph.D.Department of SurgeryDivision of Plastic SurgeryFederal University of São PauloSão Paulo, Brazil

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爆米花应助abcd_1067采纳,获得10
刚刚
kaoru完成签到,获得积分10
1秒前
wangqiuyue完成签到,获得积分10
1秒前
1秒前
长情的寇完成签到 ,获得积分10
1秒前
隐形曼青应助amy采纳,获得10
1秒前
boboo完成签到 ,获得积分10
2秒前
孟浩然完成签到 ,获得积分10
2秒前
英俊的铭应助huanir99采纳,获得30
2秒前
小金发布了新的文献求助10
2秒前
万信心完成签到,获得积分10
3秒前
3秒前
4秒前
HAHAHA完成签到,获得积分10
5秒前
Ava应助黄裳采纳,获得10
5秒前
5秒前
Hello应助张德胜采纳,获得10
5秒前
5秒前
小蘑菇应助一台小钢炮采纳,获得30
5秒前
5秒前
蒋美桥发布了新的文献求助80
5秒前
xkl发布了新的文献求助10
5秒前
喜悦的黑夜完成签到,获得积分10
6秒前
张月亮发布了新的文献求助10
6秒前
6秒前
热心的芝麻完成签到,获得积分10
6秒前
Zx_1993应助洁净芸遥采纳,获得10
7秒前
汉堡包应助X悦采纳,获得10
7秒前
7秒前
生动大白菜真实的钥匙完成签到 ,获得积分10
7秒前
漂亮忆南发布了新的文献求助10
8秒前
xupeng发布了新的文献求助10
8秒前
8秒前
Qin发布了新的文献求助20
9秒前
qqqq发布了新的文献求助10
9秒前
9秒前
毕业就集采的苦命人完成签到 ,获得积分10
10秒前
浅蓝完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524179
求助须知:如何正确求助?哪些是违规求助? 4614787
关于积分的说明 14544532
捐赠科研通 4552587
什么是DOI,文献DOI怎么找? 2494902
邀请新用户注册赠送积分活动 1475610
关于科研通互助平台的介绍 1447321