Detecting Spam Product Reviews in Roman Urdu Script

分类器(UML) 计算机科学 人工智能 自然语言处理 机器学习 马来语 阿拉伯语 语言学 哲学
作者
Naveed Hussain,Hamid Turab Mirza,Farrukh Iqbal,Ibrar Hussain,Mohammad Kaleem
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:64 (3): 432-450 被引量:4
标识
DOI:10.1093/comjnl/bxaa164
摘要

References In recent years, online customer reviews have become the main source to determine public opinion about offered products and services. Therefore, manufacturers and sellers are extremely concerned with customer reviews, as these can have a direct impact on their businesses. Unfortunately, there is an increasing trend to write spam reviews to promote or demote targeted products or services. This practice, known as review spamming, has posed many questions regarding the authenticity and dependability of customers’ review-based business processes. Although the spam review detection (SRD) problem has gained much attention from researchers, existing studies on SRD have mostly worked on datasets of English, Chinese, Arabic, Persian, and Malay languages. Therefore, the objective of this research is to identify the spam in Roman Urdu reviews using different classification models based on linguistic features and behavioral features. The performance of each classifier is evaluated in a number of perspectives: (i) linguistic features are used to calculate accuracy (F1 score) of each classifier; (ii) behavioral features combined with distributional and non-distributional aspects are used to evaluate accuracy (F1 score) of each classifier; and (iii) the combination of both linguistic and behavioral features (distributional and non-distributional aspects) are used to evaluate the accuracy of each classifier. The experimental evaluations demonstrated an improved accuracy (F1 score: 0.96), which is the result of combinations of linguistic features and behavioral features with the distributional aspect of reviewers. Moreover, behavioral features using distributional characteristic achieve an accuracy (F1 score: 0.86) and linguistic features shows accuracy (F1 score: 0.69). The outcome of this research can be used to increase customers’ confidence in the South Asian region. It can also help to reduce spam reviews in the South Asian region, particularly in Pakistan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
才染完成签到 ,获得积分10
1秒前
万能图书馆应助犹豫慕梅采纳,获得10
4秒前
5秒前
tleeny完成签到,获得积分20
5秒前
L晨晨完成签到 ,获得积分10
5秒前
wdl完成签到 ,获得积分10
6秒前
6秒前
7秒前
NULIFENDOU完成签到,获得积分10
7秒前
7秒前
白河完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
daidaidene完成签到 ,获得积分10
7秒前
QQ不需要昵称完成签到,获得积分10
8秒前
一一完成签到 ,获得积分10
8秒前
9秒前
LLLL完成签到 ,获得积分10
9秒前
tim完成签到,获得积分10
9秒前
yoyo发布了新的文献求助10
10秒前
YY发布了新的文献求助10
11秒前
曾经的苑博完成签到,获得积分10
12秒前
所所应助hy采纳,获得10
12秒前
小二郎应助和谐的行恶采纳,获得10
13秒前
LLLight777完成签到,获得积分10
13秒前
壮观梦凡发布了新的文献求助30
14秒前
15秒前
白河发布了新的文献求助10
15秒前
白梦瑶完成签到,获得积分20
16秒前
小马甲应助tim采纳,获得10
17秒前
Ventus发布了新的文献求助10
19秒前
达奚东权完成签到,获得积分20
19秒前
哈哈哈发布了新的文献求助10
19秒前
传奇3应助染唔唔采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
25秒前
25秒前
26秒前
liu发布了新的文献求助10
28秒前
mengdewen发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304