Detecting Spam Product Reviews in Roman Urdu Script

分类器(UML) 计算机科学 人工智能 自然语言处理 机器学习 马来语 阿拉伯语 语言学 哲学
作者
Naveed Hussain,Hamid Turab Mirza,Farrukh Iqbal,Ibrar Hussain,Mohammad Kaleem
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:64 (3): 432-450 被引量:4
标识
DOI:10.1093/comjnl/bxaa164
摘要

References In recent years, online customer reviews have become the main source to determine public opinion about offered products and services. Therefore, manufacturers and sellers are extremely concerned with customer reviews, as these can have a direct impact on their businesses. Unfortunately, there is an increasing trend to write spam reviews to promote or demote targeted products or services. This practice, known as review spamming, has posed many questions regarding the authenticity and dependability of customers’ review-based business processes. Although the spam review detection (SRD) problem has gained much attention from researchers, existing studies on SRD have mostly worked on datasets of English, Chinese, Arabic, Persian, and Malay languages. Therefore, the objective of this research is to identify the spam in Roman Urdu reviews using different classification models based on linguistic features and behavioral features. The performance of each classifier is evaluated in a number of perspectives: (i) linguistic features are used to calculate accuracy (F1 score) of each classifier; (ii) behavioral features combined with distributional and non-distributional aspects are used to evaluate accuracy (F1 score) of each classifier; and (iii) the combination of both linguistic and behavioral features (distributional and non-distributional aspects) are used to evaluate the accuracy of each classifier. The experimental evaluations demonstrated an improved accuracy (F1 score: 0.96), which is the result of combinations of linguistic features and behavioral features with the distributional aspect of reviewers. Moreover, behavioral features using distributional characteristic achieve an accuracy (F1 score: 0.86) and linguistic features shows accuracy (F1 score: 0.69). The outcome of this research can be used to increase customers’ confidence in the South Asian region. It can also help to reduce spam reviews in the South Asian region, particularly in Pakistan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
kurisu发布了新的文献求助50
1秒前
2秒前
菜菜完成签到 ,获得积分10
3秒前
3秒前
liyu完成签到,获得积分10
4秒前
5秒前
5秒前
didi发布了新的文献求助10
6秒前
科研通AI2S应助林小不脏采纳,获得10
8秒前
小幅上调完成签到,获得积分20
8秒前
大魁发布了新的文献求助10
8秒前
huangsi发布了新的文献求助10
9秒前
9秒前
wangyup发布了新的文献求助10
9秒前
9秒前
cc完成签到,获得积分10
10秒前
dangniuma完成签到,获得积分10
11秒前
SJW--666完成签到,获得积分0
11秒前
爆米花应助wangyup采纳,获得10
12秒前
vlots应助SSNN采纳,获得30
13秒前
soil应助pokexuejiao采纳,获得20
13秒前
HarryChan应助惊执虫儿采纳,获得10
14秒前
木木发布了新的文献求助10
15秒前
15秒前
ZT完成签到,获得积分10
15秒前
哈里发完成签到,获得积分10
15秒前
16秒前
三岁半完成签到,获得积分10
18秒前
852应助灰底爆米花采纳,获得10
18秒前
磊磊磊发布了新的文献求助10
19秒前
ShengzhangLiu发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425