亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting Spam Product Reviews in Roman Urdu Script

分类器(UML) 计算机科学 人工智能 自然语言处理 机器学习 马来语 阿拉伯语 语言学 哲学
作者
Naveed Hussain,Hamid Turab Mirza,Farrukh Iqbal,Ibrar Hussain,Mohammad Kaleem
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:64 (3): 432-450 被引量:4
标识
DOI:10.1093/comjnl/bxaa164
摘要

References In recent years, online customer reviews have become the main source to determine public opinion about offered products and services. Therefore, manufacturers and sellers are extremely concerned with customer reviews, as these can have a direct impact on their businesses. Unfortunately, there is an increasing trend to write spam reviews to promote or demote targeted products or services. This practice, known as review spamming, has posed many questions regarding the authenticity and dependability of customers’ review-based business processes. Although the spam review detection (SRD) problem has gained much attention from researchers, existing studies on SRD have mostly worked on datasets of English, Chinese, Arabic, Persian, and Malay languages. Therefore, the objective of this research is to identify the spam in Roman Urdu reviews using different classification models based on linguistic features and behavioral features. The performance of each classifier is evaluated in a number of perspectives: (i) linguistic features are used to calculate accuracy (F1 score) of each classifier; (ii) behavioral features combined with distributional and non-distributional aspects are used to evaluate accuracy (F1 score) of each classifier; and (iii) the combination of both linguistic and behavioral features (distributional and non-distributional aspects) are used to evaluate the accuracy of each classifier. The experimental evaluations demonstrated an improved accuracy (F1 score: 0.96), which is the result of combinations of linguistic features and behavioral features with the distributional aspect of reviewers. Moreover, behavioral features using distributional characteristic achieve an accuracy (F1 score: 0.86) and linguistic features shows accuracy (F1 score: 0.69). The outcome of this research can be used to increase customers’ confidence in the South Asian region. It can also help to reduce spam reviews in the South Asian region, particularly in Pakistan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
43秒前
清脆语海发布了新的文献求助10
48秒前
李爱国应助清脆语海采纳,获得10
56秒前
59秒前
1分钟前
MiaMia应助科研通管家采纳,获得30
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
1分钟前
香蕉觅云应助zl采纳,获得10
1分钟前
zym完成签到 ,获得积分10
1分钟前
2分钟前
ZYP发布了新的文献求助10
2分钟前
深情安青应助朱羊羊采纳,获得10
2分钟前
2分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
zl发布了新的文献求助10
3分钟前
hhx完成签到,获得积分20
4分钟前
zl完成签到,获得积分10
4分钟前
Wei发布了新的文献求助10
4分钟前
科研通AI6应助曦耀采纳,获得10
5分钟前
小马哥完成签到,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
5分钟前
香蕉觅云应助doublenine18采纳,获得10
6分钟前
科研通AI6应助曦耀采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4750040
关于积分的说明 15007251
捐赠科研通 4797884
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522880
关于科研通互助平台的介绍 1482534