Detecting Spam Product Reviews in Roman Urdu Script

分类器(UML) 计算机科学 人工智能 自然语言处理 机器学习 马来语 阿拉伯语 语言学 哲学
作者
Naveed Hussain,Hamid Turab Mirza,Farrukh Iqbal,Ibrar Hussain,Mohammad Kaleem
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:64 (3): 432-450 被引量:4
标识
DOI:10.1093/comjnl/bxaa164
摘要

References In recent years, online customer reviews have become the main source to determine public opinion about offered products and services. Therefore, manufacturers and sellers are extremely concerned with customer reviews, as these can have a direct impact on their businesses. Unfortunately, there is an increasing trend to write spam reviews to promote or demote targeted products or services. This practice, known as review spamming, has posed many questions regarding the authenticity and dependability of customers’ review-based business processes. Although the spam review detection (SRD) problem has gained much attention from researchers, existing studies on SRD have mostly worked on datasets of English, Chinese, Arabic, Persian, and Malay languages. Therefore, the objective of this research is to identify the spam in Roman Urdu reviews using different classification models based on linguistic features and behavioral features. The performance of each classifier is evaluated in a number of perspectives: (i) linguistic features are used to calculate accuracy (F1 score) of each classifier; (ii) behavioral features combined with distributional and non-distributional aspects are used to evaluate accuracy (F1 score) of each classifier; and (iii) the combination of both linguistic and behavioral features (distributional and non-distributional aspects) are used to evaluate the accuracy of each classifier. The experimental evaluations demonstrated an improved accuracy (F1 score: 0.96), which is the result of combinations of linguistic features and behavioral features with the distributional aspect of reviewers. Moreover, behavioral features using distributional characteristic achieve an accuracy (F1 score: 0.86) and linguistic features shows accuracy (F1 score: 0.69). The outcome of this research can be used to increase customers’ confidence in the South Asian region. It can also help to reduce spam reviews in the South Asian region, particularly in Pakistan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
常富育完成签到,获得积分10
1秒前
pwy完成签到,获得积分10
1秒前
NexusExplorer应助Breathe采纳,获得10
1秒前
烟花应助小蚊子采纳,获得10
1秒前
loong发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
奥里给完成签到,获得积分10
3秒前
3秒前
3秒前
tian发布了新的文献求助10
3秒前
ww发布了新的文献求助10
4秒前
认真觅荷发布了新的文献求助10
4秒前
玛卡巴卡完成签到,获得积分20
4秒前
科研通AI5应助代代代代采纳,获得10
5秒前
MrRen完成签到,获得积分10
5秒前
牛油果果完成签到,获得积分10
5秒前
hoshi1018完成签到,获得积分10
5秒前
斯文败类应助驱蚊器采纳,获得30
5秒前
科研通AI6应助鲸鱼采纳,获得10
6秒前
303完成签到 ,获得积分10
6秒前
7秒前
LI完成签到,获得积分10
7秒前
7秒前
研友_nEoEy8完成签到,获得积分10
8秒前
冰淇淋完成签到,获得积分10
8秒前
CipherSage应助鲜于冰彤采纳,获得10
8秒前
Weiweiweixiao完成签到,获得积分10
9秒前
9秒前
9秒前
Nimnse发布了新的文献求助10
9秒前
99完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
ding应助孙萌萌采纳,获得20
10秒前
heheha完成签到,获得积分10
11秒前
刘太冰完成签到,获得积分10
11秒前
12秒前
思玉发布了新的文献求助10
12秒前
man发布了新的文献求助10
13秒前
小玲玲完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403