A BERT-Based Named Entity Recognition in Chinese Electronic Medical Record

计算机科学 命名实体识别 自然语言处理 人工智能 情报检索 工程类 任务(项目管理) 系统工程
作者
Qingchuan Wang,Haihong E
标识
DOI:10.1145/3436369.3436390
摘要

Named entity recognition, aiming at identifying and classifying named entity mentioned in the structured or unstructured text, is a fundamental subtask for information extraction in natural language processing (NLP). With the development of electronic medical records, obtaining the key and effective information in electronic document through named entity identification has become an increasingly popular research direction. In this article, we adapt a recently introduced pre-trained language model BERT for named entity recognition in electronic medical records to solve the problem of missing context information and we add an extra mechanism to capture the relationship between words. Based on this, (1) the entities can be represented by sentence-level vector, with the forward as well as backward information of the sentence, which can be directly used by downstream tasks; (2) the model acquires the representation of word in context and learn the potential relation between words to decrease the influence of inconsistent entity markup problem of a text. We conduct experiments an electronic medical record dataset proposed by China Conference on Knowledge Graph and Semantic Computing in 2019. The experimental result shows that our proposed method has an improvement compared with the traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peace发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
ella333发布了新的文献求助10
4秒前
搜集达人应助htWu采纳,获得10
5秒前
小二郎应助包容的香菱采纳,获得10
6秒前
zhw发布了新的文献求助10
7秒前
博闻发布了新的文献求助10
7秒前
yihuifa完成签到 ,获得积分10
7秒前
zhsy发布了新的文献求助10
7秒前
Nes发布了新的文献求助10
7秒前
8秒前
无敌葡萄爱学习完成签到 ,获得积分10
9秒前
zhw完成签到,获得积分10
12秒前
12秒前
12秒前
14秒前
wuhaixia发布了新的文献求助10
15秒前
斯文败类应助77采纳,获得10
16秒前
海皇星空发布了新的文献求助10
17秒前
19秒前
英俊的铭应助张凤采纳,获得10
19秒前
zhsy完成签到,获得积分10
20秒前
璐宝完成签到,获得积分10
20秒前
住在魔仙堡的鱼完成签到 ,获得积分10
23秒前
12356完成签到,获得积分10
23秒前
丘比特应助wuxunxun2015采纳,获得10
24秒前
顾矜应助湛刘佳采纳,获得10
24秒前
25秒前
25秒前
Jupiter完成签到,获得积分10
27秒前
wuhaixia完成签到,获得积分10
28秒前
英俊的铭应助博闻采纳,获得10
29秒前
冷傲雨寒完成签到,获得积分10
29秒前
白白白完成签到,获得积分10
30秒前
张凤发布了新的文献求助10
30秒前
Eddy完成签到,获得积分10
31秒前
pengchengxi完成签到,获得积分10
31秒前
淡然从雪发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761895
求助须知:如何正确求助?哪些是违规求助? 3305631
关于积分的说明 10135016
捐赠科研通 3019709
什么是DOI,文献DOI怎么找? 1658368
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754766