State-of-the-Art Review of Machine Learning Applications in Constitutive Modeling of Soils

一般化 计算机科学 人工神经网络 机器学习 范围(计算机科学) 人工智能 本构方程 集合(抽象数据类型) 原始数据 基础(线性代数) 简单(哲学) 算法 数学 工程类 数学分析 有限元法 哲学 认识论 结构工程 程序设计语言 几何学
作者
Pin Zhang,Zhen‐Yu Yin,Yin-Fu Jin
出处
期刊:Archives of Computational Methods in Engineering [Springer Science+Business Media]
卷期号:28 (5): 3661-3686 被引量:104
标识
DOI:10.1007/s11831-020-09524-z
摘要

Machine learning (ML) may provide a new methodology to directly learn from raw data to develop constitutive models for soils by using pure mathematic skills. It has presented success and versatility in cases of simple stress paths due to its strong non-linear mapping capacity without limitations of constitutive formulations. However, current studies on the ML-based constitutive modeling of soils is still very limited. This study comprehensively reviews the application of ML algorithms in the development of constitutive models of soils and compares the performance of different ML algorithms. First, the basic principles of typical ML algorithms used in describing soil behaviors are briefly elaborated. The main characteristics and the limitations of such ML algorithms are summarized and compared. Then, the methodology of developing a ML-based soil model is reviewed from six aspects, such as adopted ML algorithms, data source, framework of the ML-based model, training strategy, generalization ability and application scope. Finally, five new ML-based models are developed using five typical ML algorithms (i.e. BPNN, RBF, LSTM, GRU and BiLSTM that can predict multi outputs together) based on same set of experimental results of sand, and compare each other in terms of the predictive accuracy and generalization ability. Results show the long short-term memory (LSTM) neural network and its variants are most suitable for developing constitutive models. Moreover, some useful suggestions for developing the ML-based soil model are also provided for the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
kalcspin完成签到,获得积分10
刚刚
1秒前
bobecust完成签到,获得积分10
1秒前
YY19891219发布了新的文献求助10
2秒前
2秒前
符聪发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助17381362015采纳,获得10
2秒前
圆圆懒羊羊完成签到,获得积分10
3秒前
不是二次元完成签到,获得积分20
3秒前
善学以致用应助亮亮采纳,获得10
3秒前
Lucas应助失眠的凝竹采纳,获得10
3秒前
Zu完成签到,获得积分20
4秒前
5秒前
藤井树发布了新的文献求助10
5秒前
purple完成签到 ,获得积分10
5秒前
6秒前
杨小黑发布了新的文献求助10
6秒前
热心市民小红花应助Huang采纳,获得10
7秒前
Swu发布了新的文献求助30
7秒前
4qfguj完成签到,获得积分10
7秒前
Jasper应助文武采纳,获得10
7秒前
英俊的铭应助YY19891219采纳,获得10
8秒前
8秒前
lhr发布了新的文献求助30
8秒前
顾矜应助pfliu采纳,获得10
9秒前
9秒前
雨石完成签到,获得积分10
11秒前
欧小仙发布了新的文献求助10
11秒前
FG发布了新的文献求助10
12秒前
12秒前
老陈发布了新的文献求助10
12秒前
WWshu应助苏苏采纳,获得10
13秒前
小郭应助hearts_j采纳,获得10
13秒前
qingjiu完成签到,获得积分10
13秒前
海海完成签到,获得积分10
14秒前
能干如音发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344