State-of-the-Art Review of Machine Learning Applications in Constitutive Modeling of Soils

一般化 计算机科学 人工神经网络 机器学习 范围(计算机科学) 人工智能 本构方程 集合(抽象数据类型) 原始数据 基础(线性代数) 简单(哲学) 算法 数学 工程类 数学分析 有限元法 哲学 认识论 结构工程 程序设计语言 几何学
作者
Pin Zhang,Zhen‐Yu Yin,Yin-Fu Jin
出处
期刊:Archives of Computational Methods in Engineering [Springer Science+Business Media]
卷期号:28 (5): 3661-3686 被引量:104
标识
DOI:10.1007/s11831-020-09524-z
摘要

Machine learning (ML) may provide a new methodology to directly learn from raw data to develop constitutive models for soils by using pure mathematic skills. It has presented success and versatility in cases of simple stress paths due to its strong non-linear mapping capacity without limitations of constitutive formulations. However, current studies on the ML-based constitutive modeling of soils is still very limited. This study comprehensively reviews the application of ML algorithms in the development of constitutive models of soils and compares the performance of different ML algorithms. First, the basic principles of typical ML algorithms used in describing soil behaviors are briefly elaborated. The main characteristics and the limitations of such ML algorithms are summarized and compared. Then, the methodology of developing a ML-based soil model is reviewed from six aspects, such as adopted ML algorithms, data source, framework of the ML-based model, training strategy, generalization ability and application scope. Finally, five new ML-based models are developed using five typical ML algorithms (i.e. BPNN, RBF, LSTM, GRU and BiLSTM that can predict multi outputs together) based on same set of experimental results of sand, and compare each other in terms of the predictive accuracy and generalization ability. Results show the long short-term memory (LSTM) neural network and its variants are most suitable for developing constitutive models. Moreover, some useful suggestions for developing the ML-based soil model are also provided for the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
komg完成签到,获得积分10
刚刚
orixero应助qingchidue采纳,获得10
1秒前
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
菠菜应助科研通管家采纳,获得10
1秒前
自莲珊完成签到,获得积分10
1秒前
菠菜应助科研通管家采纳,获得10
1秒前
菠菜应助科研通管家采纳,获得10
1秒前
Ava应助北冥鱼采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
KKK完成签到,获得积分10
2秒前
今后应助科研通管家采纳,获得10
2秒前
fangzhang发布了新的文献求助10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
完美世界应助科研通管家采纳,获得30
2秒前
3秒前
wop111应助科研通管家采纳,获得20
3秒前
量子星尘发布了新的文献求助10
3秒前
领导范儿应助哈哈采纳,获得10
3秒前
3秒前
科研通AI6应助tt采纳,获得10
3秒前
Bethan完成签到,获得积分10
4秒前
4秒前
行云流水发布了新的文献求助10
4秒前
脑洞疼应助Luisa采纳,获得10
4秒前
FashionBoy应助nixiaozhi采纳,获得10
4秒前
5秒前
霖总发布了新的文献求助10
5秒前
6秒前
6秒前
dr.du完成签到 ,获得积分10
6秒前
归尘发布了新的文献求助10
6秒前
lily发布了新的文献求助10
7秒前
7秒前
科研通AI6应助feixue采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884272
求助须知:如何正确求助?哪些是违规求助? 4169600
关于积分的说明 12938186
捐赠科研通 3930023
什么是DOI,文献DOI怎么找? 2156406
邀请新用户注册赠送积分活动 1174785
关于科研通互助平台的介绍 1079562