猜想
数学
克罗内克三角洲
模块化形式
无理数
连接(主束)
对数
纯数学
有理函数
二次方程
极限(数学)
功能(生物学)
域代数上的
数学分析
量子力学
进化生物学
生物
物理
几何学
作者
Danylo Radchenko,Don Zagier
标识
DOI:10.1515/crelle-2023-0009
摘要
In this paper we study two functions $F(x)$ and $J(x)$, originally found by Herglotz in 1923 and later rediscovered and used by one of the authors in connection with the Kronecker limit formula for real quadratic fields. We discuss many interesting properties of these functions, including special values at rational or quadratic irrational arguments as rational linear combinations of dilogarithms and products of logarithms, functional equations coming from Hecke operators, and connections with Stark's conjecture. We also discuss connections with 1-cocycles for the modular group $\mathrm{PSL}(2,\mathbb{Z})$.
科研通智能强力驱动
Strongly Powered by AbleSci AI