Development of a versatile and efficient C–N lyase platform for asymmetric hydroamination via computational enzyme redesign

氢胺化 裂解酶 组合化学 亲核细胞 化学 区域选择性 电泳剂 合成生物学 催化作用 立体化学 有机化学 计算生物学 生物
作者
Yinglu Cui,Yinghui Wang,Wenya Tian,Yifan Bu,Tao Li,Xuexian Cui,Tong Zhu,Ruifeng Li,Bian Wu
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:4 (5): 364-373 被引量:84
标识
DOI:10.1038/s41929-021-00604-2
摘要

Although C–N bonds are ubiquitous in natural products, pharmaceuticals and agrochemicals, biocatalysts forging these bonds with high atom-efficiency and enantioselectivity have been limited to a few select enzymes. In particular, ammonia lyases have emerged as powerful catalysts to access C–N bond formation via hydroamination. However, the use of ammonia lyases is rather restricted due to their narrow synthetic scope. Herein, we report the computational redesign of aspartase, a highly specific ammonia lyase, to yield C–N lyases with cross-compatibility of non-native nucleophiles and electrophiles. A wide range of non-canonical amino acids (ncAAs) are afforded with excellent conversion (up to 99%), regioselectivity >99% and enantioselectivity >99%. The process is scalable under industrially relevant protocols (exemplified in kilogram-scale synthesis) and can be facilely integrated in cascade reactions (demonstrated in the synthesis of β-lactams with N-1 and C-4 substitutions). This versatile and efficient C–N lyase platform supports the preparation of ncAAs and their derivatives, and will present opportunities in synthetic biology. Ammonia lyases are powerful catalysts to access C–N bond formation via hydroamination, but show a narrow synthetic scope. Now, by computational redesign of an aspartase, a C–N lyase is developed that shows cross-compatibility of non-native nucleophiles and electrophiles expanding the synthetic scope.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助威武的人杰采纳,获得50
刚刚
龙仔完成签到 ,获得积分10
刚刚
Nic发布了新的文献求助10
1秒前
2秒前
2秒前
大萌发布了新的文献求助10
2秒前
2秒前
Owen应助三水采纳,获得10
3秒前
酷波er应助杨旭采纳,获得10
3秒前
3秒前
NexusExplorer应助感动的白梅采纳,获得10
3秒前
西奥发布了新的文献求助10
3秒前
长剑玉珥完成签到,获得积分10
3秒前
mika910完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
liao应助zwc采纳,获得10
5秒前
汉堡包应助无昵称采纳,获得10
5秒前
5秒前
sqcpk完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
小菜一碟完成签到,获得积分10
5秒前
ori完成签到,获得积分10
6秒前
SibetHu发布了新的文献求助10
7秒前
CodeCraft应助小华采纳,获得10
7秒前
7秒前
7秒前
bkagyin应助豆儿嘚小豆儿采纳,获得10
7秒前
典雅夏之完成签到,获得积分10
7秒前
hy发布了新的文献求助10
7秒前
7秒前
bkagyin应助啧啧啧采纳,获得10
8秒前
8秒前
曾经富发布了新的文献求助10
8秒前
8秒前
听雨应助桃子e采纳,获得10
8秒前
潇洒紫真发布了新的文献求助10
9秒前
科研通AI2S应助Catherine采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440