结肠炎
肠道菌群
失调
势垒函数
免疫学
回肠炎
封堵器
炎症性肠病
生物
微生物学
炎症
溃疡性结肠炎
内科学
紧密连接
医学
克罗恩病
生物化学
细胞生物学
疾病
作者
Kilia Y. Liu,Cindy H. Nakatsu,Yava Jones‐Hall,Ariangela J. Kozik,Qing Jiang
标识
DOI:10.1016/j.freeradbiomed.2020.12.017
摘要
Inflammatory bowel diseases (IBDs) including colitis are intestinal disorders characterized by chronic inflammation, barrier dysfunction and dysbiosis. Specific forms of vitamin E have been shown to attenuate colitis, but the mechanisms are not fully understood. The objective of this study is to examine the impact of α-tocopherol (αT) and γ-tocopherol-rich tocopherols (γTmT) on gut inflammation, barrier integrity and microbiota in dextran sulfate sodium (DSS)-induced colitis in mice. We observe that αT and γTmT mitigated DSS-caused fecal bleeding, diarrhea and elevation of IL-6. These vitamin E forms inhibited colitis-induced loss of the tight junction protein occludin, and attenuated colitis-caused elevation of LPS-binding protein in the plasma, a surrogate marker of intestinal barrier dysfunction, suggesting protection of gut barrier integrity. Consistently, αT and γT mitigated TNF-α/IFN-γ-induced impairment of trans-epithelial electrical resistance in human intestinal epithelial Caco-2 cell monolayer. Using 16S rRNA gene sequencing of fecal DNA, we observe that DSS reduced gut microbial evenness and separated microbial composition from healthy controls. In colitis-induced mice, γTmT but not αT separated gut microbial composition from controls, and attenuated DSS-caused depletion of Roseburia, which contains butyrate producing bacteria and is decreased in IBD patients. Canonical correspondence analysis also supports that γTmT favorably altered gut microbial community. In contrast, neither αT nor γTmT affected gut microbes in healthy animals. These results provide evidence supporting protective effects of αT and γT on intestinal barrier function and that γTmT caused favorable changes of the gut microbiota in colitis-induced mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI