药物输送
化学
药品
转移
癌症
癌症研究
多酚
药理学
医学
生物化学
内科学
有机化学
抗氧化剂
作者
Si Chen,Jin‐Xuan Fan,Di‐Wei Zheng,Fan Liu,Xuan Zeng,Guoping Yan,Xian‐Zheng Zhang
出处
期刊:Biomaterials Science
[The Royal Society of Chemistry]
日期:2019-11-13
卷期号:8 (2): 702-711
被引量:33
摘要
Although chemotherapy is the most common method in clinical therapeutics with a straightforward mechanism, conventional anti-tumor drugs are still almost incapable of preventing the occurrence of tumor metastasis. In this study, we developed a multi-functional drug delivery system EINP@DOX consisting of a tea-derived polyphenol EGCG, iron ions and DOX. The system integrated the functions of tumor inhibition, diagnosis and metastasis prevention to achieve a systematic tumor treatment. The nanoscale size of EINP@DOX facilitated its accumulation in tumor tissues by means of the enhanced permeability and retention (EPR) effect, and it was then transferred to endosomes. The weakly acidic microenvironment in the endosomes of the tumor cells could destroy the coordination structure of EINP@DOX to realize the release of DOX for tumor therapy. Furthermore, the dissociative EGCG played the role of an adjuvant to restrain EMT and down-regulate the MMP levels, which could prevent the occurrence of tumor metastasis. Meanwhile, iron ions as superior magnetic resonance imaging (MRI) contrast agents provided visual evidence for the accurate location of EINP@DOX. In vitro and in vivo studies demonstrated that EINP@DOX showed a remarkable performance in tumor diagnosis and excellent therapeutic efficacy, inhibiting the metastasis of tumor cells effectively at the same time.
科研通智能强力驱动
Strongly Powered by AbleSci AI