Coupled Cation–Anion Dynamics Enhances Cation Mobility in Room-Temperature Superionic Solid-State Electrolytes

化学 离子 快离子导体 电导率 电解质 离子运输机 中子衍射 离子电导率 纳米技术 化学物理 物理化学 结晶学 材料科学 晶体结构 有机化学 电极
作者
Zhizhen Zhang,Pierre–Nicholas Roy,Hui Li,Maxim Avdeev,Linda F. Nazar
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (49): 19360-19372 被引量:118
标识
DOI:10.1021/jacs.9b09343
摘要

Single-ion conducting solid electrolytes are gaining tremendous attention as essential materials for solid-state batteries, but a comprehensive understanding of the factors that dictate high ion mobility remains elusive. Here, for the first time, we use a combination of the Maximum Entropy Method analysis of room-temperature neutron powder diffraction data, ab initio molecular dynamics, and joint-time correlation analysis to demonstrate that the dynamic response of the anion framework plays a significant role in the new class of fast ion conductors, Na11Sn2PnX12 (Pn = P, Sb; X = S, Se). Facile [PX4]3- anion rotation exists in superionic Na11Sn2PS12 and Na11Sn2PSe12, but greatly hindered [SbS4]3- rotational dynamics are observed in their less conductive analogue, Na11Sn2SbS12. Along with introducing dynamic frustration in the energy landscape, the fluctuation caused by [PX4]3- anion rotation is firmly proved to couple to and facilitate long-range cation mobility, by transiently widening the bottlenecks for Na+-ion diffusion. The combined analysis described here resolves the role of the long-debated paddle-wheel mechanism, and is the first direct evidence that anion rotation significantly enhances cation migration in rotor phases. The joint-time correlation analysis developed in our work can be broadly applied to analyze coupled cation-anion interplay where traditional transition state theory does not apply. These findings deliver important insights into the fundamentals of ion transport in solid electrolytes. Invoking anion rotational dynamics provides a vital strategy to enhance cation conductivity and serves as an additional and universal design principle for fast ion conductors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助jjjj采纳,获得10
刚刚
西西歪发布了新的文献求助30
刚刚
muriel发布了新的文献求助10
1秒前
iu完成签到,获得积分10
2秒前
Yii完成签到,获得积分10
2秒前
3秒前
0609发布了新的文献求助10
3秒前
4秒前
薛洁洁的小糖应助WEI采纳,获得30
5秒前
杳鸢应助活泼山雁采纳,获得10
5秒前
Yii发布了新的文献求助10
5秒前
隐形曼青应助B站萧亚轩采纳,获得10
6秒前
7秒前
ww完成签到 ,获得积分10
8秒前
yulong发布了新的文献求助10
9秒前
9秒前
小贺完成签到,获得积分20
13秒前
桐拾叁完成签到,获得积分10
14秒前
Orange应助贤惠的饼干采纳,获得10
15秒前
15秒前
15秒前
Baboonium完成签到,获得积分10
15秒前
15秒前
15秒前
拼搏向前完成签到,获得积分10
15秒前
16秒前
16秒前
小蘑菇应助rachel03采纳,获得30
16秒前
17秒前
汉堡包应助狂野的山雁采纳,获得10
18秒前
英俊的铭应助Archer采纳,获得10
18秒前
刘敏完成签到,获得积分10
18秒前
18秒前
18秒前
顾木木发布了新的文献求助30
19秒前
GG发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443772
求助须知:如何正确求助?哪些是违规求助? 3039907
关于积分的说明 8978775
捐赠科研通 2728422
什么是DOI,文献DOI怎么找? 1496514
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213