Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma

医学 头颈部 头颈部鳞状细胞癌 基底细胞 鳞状细胞癌 鉴定(生物学) 肿瘤科 内科学 头颈部癌 放射科 病理 放射治疗 外科 植物 生物
作者
Benjamin H. Kann,Daniel F. Hicks,Seyedmehdi Payabvash,Amit Mahajan,Justin Du,Vishal Gupta,Henry S. Park,James B. Yu,Wendell G. Yarbrough,Barbara Burtness,Zain Husain,Sanjay Aneja
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:38 (12): 1304-1311 被引量:108
标识
DOI:10.1200/jco.19.02031
摘要

Extranodal extension (ENE) is a well-established poor prognosticator and an indication for adjuvant treatment escalation in patients with head and neck squamous cell carcinoma (HNSCC). Identification of ENE on pretreatment imaging represents a diagnostic challenge that limits its clinical utility. We previously developed a deep learning algorithm that identifies ENE on pretreatment computed tomography (CT) imaging in patients with HNSCC. We sought to validate our algorithm performance for patients from a diverse set of institutions and compare its diagnostic ability to that of expert diagnosticians.We obtained preoperative, contrast-enhanced CT scans and corresponding pathology results from two external data sets of patients with HNSCC: an external institution and The Cancer Genome Atlas (TCGA) HNSCC imaging data. Lymph nodes were segmented and annotated as ENE-positive or ENE-negative on the basis of pathologic confirmation. Deep learning algorithm performance was evaluated and compared directly to two board-certified neuroradiologists.A total of 200 lymph nodes were examined in the external validation data sets. For lymph nodes from the external institution, the algorithm achieved an area under the receiver operating characteristic curve (AUC) of 0.84 (83.1% accuracy), outperforming radiologists' AUCs of 0.70 and 0.71 (P = .02 and P = .01). Similarly, for lymph nodes from the TCGA, the algorithm achieved an AUC of 0.90 (88.6% accuracy), outperforming radiologist AUCs of 0.60 and 0.82 (P < .0001 and P = .16). Radiologist diagnostic accuracy improved when receiving deep learning assistance.Deep learning successfully identified ENE on pretreatment imaging across multiple institutions, exceeding the diagnostic ability of radiologists with specialized head and neck experience. Our findings suggest that deep learning has utility in the identification of ENE in patients with HNSCC and has the potential to be integrated into clinical decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助zhaow采纳,获得10
1秒前
Jasper应助Kelsey采纳,获得10
1秒前
wqq发布了新的文献求助30
1秒前
2秒前
2秒前
2秒前
meimhuang发布了新的文献求助10
3秒前
长情青烟发布了新的文献求助10
3秒前
4秒前
6秒前
lupin完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
9秒前
李爱国应助ZYL采纳,获得10
9秒前
愿713发布了新的文献求助10
9秒前
布丁发布了新的文献求助10
9秒前
小熊完成签到,获得积分10
9秒前
天道轮回发布了新的文献求助10
9秒前
zhugepengju发布了新的文献求助10
9秒前
初南发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助奋斗的萝采纳,获得10
10秒前
一一应助奋斗的萝采纳,获得10
10秒前
hunter完成签到,获得积分10
10秒前
州州完成签到,获得积分10
10秒前
11秒前
dzbb应助小崔采纳,获得10
11秒前
GL完成签到,获得积分10
11秒前
heli发布了新的文献求助20
11秒前
12334124发布了新的文献求助10
12秒前
12秒前
大霖发布了新的文献求助10
13秒前
13秒前
FashionBoy应助Joefish采纳,获得10
13秒前
烟花应助去糖少冰采纳,获得10
13秒前
老迟到的问安完成签到 ,获得积分10
13秒前
wqq完成签到,获得积分0
14秒前
疯少完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663