Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma

医学 头颈部 头颈部鳞状细胞癌 基底细胞 鳞状细胞癌 鉴定(生物学) 肿瘤科 内科学 头颈部癌 放射科 病理 放射治疗 外科 植物 生物
作者
Benjamin H. Kann,Daniel F. Hicks,Seyedmehdi Payabvash,Amit Mahajan,Justin Du,Vishal Gupta,Henry S. Park,James B. Yu,Wendell G. Yarbrough,Barbara Burtness,Zain Husain,Sanjay Aneja
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:38 (12): 1304-1311 被引量:123
标识
DOI:10.1200/jco.19.02031
摘要

Extranodal extension (ENE) is a well-established poor prognosticator and an indication for adjuvant treatment escalation in patients with head and neck squamous cell carcinoma (HNSCC). Identification of ENE on pretreatment imaging represents a diagnostic challenge that limits its clinical utility. We previously developed a deep learning algorithm that identifies ENE on pretreatment computed tomography (CT) imaging in patients with HNSCC. We sought to validate our algorithm performance for patients from a diverse set of institutions and compare its diagnostic ability to that of expert diagnosticians.We obtained preoperative, contrast-enhanced CT scans and corresponding pathology results from two external data sets of patients with HNSCC: an external institution and The Cancer Genome Atlas (TCGA) HNSCC imaging data. Lymph nodes were segmented and annotated as ENE-positive or ENE-negative on the basis of pathologic confirmation. Deep learning algorithm performance was evaluated and compared directly to two board-certified neuroradiologists.A total of 200 lymph nodes were examined in the external validation data sets. For lymph nodes from the external institution, the algorithm achieved an area under the receiver operating characteristic curve (AUC) of 0.84 (83.1% accuracy), outperforming radiologists' AUCs of 0.70 and 0.71 (P = .02 and P = .01). Similarly, for lymph nodes from the TCGA, the algorithm achieved an AUC of 0.90 (88.6% accuracy), outperforming radiologist AUCs of 0.60 and 0.82 (P < .0001 and P = .16). Radiologist diagnostic accuracy improved when receiving deep learning assistance.Deep learning successfully identified ENE on pretreatment imaging across multiple institutions, exceeding the diagnostic ability of radiologists with specialized head and neck experience. Our findings suggest that deep learning has utility in the identification of ENE in patients with HNSCC and has the potential to be integrated into clinical decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
种下梧桐树完成签到,获得积分10
刚刚
1秒前
2秒前
Akim应助Skuld采纳,获得10
2秒前
晚风完成签到,获得积分20
3秒前
4秒前
搜集达人应助科研小辣机采纳,获得10
4秒前
予修完成签到,获得积分10
5秒前
5秒前
jiaojiao发布了新的文献求助10
6秒前
唠嗑在呐完成签到,获得积分10
6秒前
吼吼哈哈完成签到,获得积分10
7秒前
哎哟很烦完成签到,获得积分10
8秒前
houcheng发布了新的文献求助10
9秒前
shushu发布了新的文献求助10
9秒前
fenghp发布了新的文献求助200
10秒前
Regulusyang完成签到,获得积分10
10秒前
十一完成签到 ,获得积分10
10秒前
11秒前
11秒前
整齐的小鸽子完成签到,获得积分10
11秒前
11秒前
深情傀斗完成签到,获得积分10
14秒前
pppprrrrrrr发布了新的文献求助20
16秒前
MJX完成签到,获得积分10
17秒前
安娜给安娜的求助进行了留言
17秒前
998877剑指发布了新的文献求助10
18秒前
18秒前
bkagyin应助houcheng采纳,获得10
20秒前
ww发布了新的文献求助10
22秒前
2799完成签到,获得积分10
23秒前
香蕉鸽子发布了新的文献求助20
30秒前
houcheng完成签到,获得积分10
30秒前
shushu完成签到,获得积分10
31秒前
31秒前
33秒前
xzy998应助mm采纳,获得10
33秒前
an完成签到,获得积分10
40秒前
ll发布了新的文献求助10
40秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159739
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804374