Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma

医学 头颈部 头颈部鳞状细胞癌 基底细胞 鳞状细胞癌 鉴定(生物学) 肿瘤科 内科学 头颈部癌 放射科 病理 放射治疗 外科 植物 生物
作者
Benjamin H. Kann,Daniel F. Hicks,Seyedmehdi Payabvash,Amit Mahajan,Justin Du,Vishal Gupta,Henry S. Park,James B. Yu,Wendell G. Yarbrough,Barbara Burtness,Zain Husain,Sanjay Aneja
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:38 (12): 1304-1311 被引量:116
标识
DOI:10.1200/jco.19.02031
摘要

Extranodal extension (ENE) is a well-established poor prognosticator and an indication for adjuvant treatment escalation in patients with head and neck squamous cell carcinoma (HNSCC). Identification of ENE on pretreatment imaging represents a diagnostic challenge that limits its clinical utility. We previously developed a deep learning algorithm that identifies ENE on pretreatment computed tomography (CT) imaging in patients with HNSCC. We sought to validate our algorithm performance for patients from a diverse set of institutions and compare its diagnostic ability to that of expert diagnosticians.We obtained preoperative, contrast-enhanced CT scans and corresponding pathology results from two external data sets of patients with HNSCC: an external institution and The Cancer Genome Atlas (TCGA) HNSCC imaging data. Lymph nodes were segmented and annotated as ENE-positive or ENE-negative on the basis of pathologic confirmation. Deep learning algorithm performance was evaluated and compared directly to two board-certified neuroradiologists.A total of 200 lymph nodes were examined in the external validation data sets. For lymph nodes from the external institution, the algorithm achieved an area under the receiver operating characteristic curve (AUC) of 0.84 (83.1% accuracy), outperforming radiologists' AUCs of 0.70 and 0.71 (P = .02 and P = .01). Similarly, for lymph nodes from the TCGA, the algorithm achieved an AUC of 0.90 (88.6% accuracy), outperforming radiologist AUCs of 0.60 and 0.82 (P < .0001 and P = .16). Radiologist diagnostic accuracy improved when receiving deep learning assistance.Deep learning successfully identified ENE on pretreatment imaging across multiple institutions, exceeding the diagnostic ability of radiologists with specialized head and neck experience. Our findings suggest that deep learning has utility in the identification of ENE in patients with HNSCC and has the potential to be integrated into clinical decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
虚幻白玉发布了新的文献求助10
1秒前
清客完成签到 ,获得积分10
1秒前
传奇3应助阳阳采纳,获得10
1秒前
3秒前
皮皮桂发布了新的文献求助10
3秒前
Hello应助无奈傲菡采纳,获得10
3秒前
故意的傲玉应助FENGHUI采纳,获得10
4秒前
5秒前
科研通AI5应助nextconnie采纳,获得10
6秒前
James完成签到,获得积分10
6秒前
7秒前
Lucas应助sun采纳,获得10
8秒前
KristenStewart完成签到,获得积分10
10秒前
过时的热狗完成签到,获得积分10
10秒前
点点完成签到,获得积分10
10秒前
Zxc发布了新的文献求助10
11秒前
涨芝士完成签到 ,获得积分10
12秒前
13秒前
无名欧文关注了科研通微信公众号
13秒前
科研123完成签到,获得积分10
15秒前
crescent完成签到 ,获得积分10
17秒前
无奈傲菡发布了新的文献求助10
17秒前
烟花应助123号采纳,获得10
20秒前
超帅的遥完成签到,获得积分10
20秒前
Zxc完成签到,获得积分10
21秒前
lbt完成签到 ,获得积分10
22秒前
yao完成签到 ,获得积分10
23秒前
23秒前
25秒前
26秒前
26秒前
doudou完成签到 ,获得积分10
26秒前
BCS完成签到,获得积分10
26秒前
领导范儿应助KYN采纳,获得10
26秒前
27秒前
独特的莫言完成签到,获得积分10
29秒前
lin发布了新的文献求助10
30秒前
aero完成签到 ,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849