Convolutional Neural Network Detection of Axillary Lymph Node Metastasis Using Standard Clinical Breast MRI

医学 乳腺癌 接收机工作特性 放射科 腋窝淋巴结 磁共振成像 卷积神经网络 淋巴结 阶段(地层学) 转移 腋窝 放射治疗计划 癌症 内科学 放射治疗 人工智能 计算机科学 古生物学 生物
作者
Thomas Ren,Renee Cattell,Hongyi Duanmu,Pauline Huang,Haifang Li,R. Vanguri,Michael Z. Liu,Sachin Jambawalikar,Richard Ha,Fusheng Wang,Jules Cohen,Clifford A. Bernstein,Lev Bangiyev,Timothy Q. Duong
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:20 (3): e301-e308 被引量:47
标识
DOI:10.1016/j.clbc.2019.11.009
摘要

Background Axillary lymph node status is important for breast cancer staging and treatment planning as the majority of breast cancer metastasis spreads through the axillary lymph nodes. There is currently no reliable noninvasive imaging method to detect nodal metastasis associated with breast cancer. Materials and Methods Magnetic resonance imaging (MRI) data were those from the peak contrast dynamic image from 1.5 Tesla MRI scanners at the pre-neoadjuvant chemotherapy stage. Data consisted of 66 abnormal nodes from 38 patients and 193 normal nodes from 61 patients. Abnormal nodes were those determined by expert radiologist based on 18Fluorodeoxyglucose positron emission tomography images. Normal nodes were those with negative diagnosis of breast cancer. The convolutional neural network consisted of 5 convolutional layers with filters from 16 to 128. Receiver operating characteristic analysis was performed to evaluate prediction performance. For comparison, an expert radiologist also scored the same nodes as normal or abnormal. Results The convolutional neural network model yielded a specificity of 79.3% ± 5.1%, sensitivity of 92.1% ± 2.9%, positive predictive value of 76.9% ± 4.0%, negative predictive value of 93.3% ± 1.9%, accuracy of 84.8% ± 2.4%, and receiver operating characteristic area under the curve of 0.91 ± 0.02 for the validation data set. These results compared favorably with scoring by radiologists (accuracy of 78%). Conclusion The results are encouraging and suggest that this approach may prove useful for classifying lymph node status on MRI in clinical settings in patients with breast cancer, although additional studies are needed before routine clinical use can be realized. This approach has the potential to ultimately be a noninvasive alternative to lymph node biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daaarrr完成签到,获得积分10
刚刚
非一发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
乐乐应助事在人为采纳,获得10
6秒前
7秒前
jisujun完成签到,获得积分20
7秒前
41应助momo采纳,获得10
8秒前
DijiaXu应助jszhoucl采纳,获得10
10秒前
热爱科研的小白鼠完成签到,获得积分10
10秒前
10秒前
爱穿毛袜完成签到,获得积分10
11秒前
大模型应助LJJ采纳,获得10
11秒前
spirit完成签到 ,获得积分10
12秒前
思源应助hhh采纳,获得10
12秒前
13秒前
正直的魔镜完成签到 ,获得积分10
14秒前
16秒前
KM比比发布了新的文献求助10
17秒前
如此完成签到,获得积分10
17秒前
qq完成签到 ,获得积分10
18秒前
qqq发布了新的文献求助10
19秒前
火星上鑫鹏完成签到,获得积分10
19秒前
事在人为发布了新的文献求助10
19秒前
沉默的婴发布了新的文献求助20
20秒前
杨涵完成签到 ,获得积分10
21秒前
ponysmile完成签到,获得积分20
22秒前
葡萄完成签到,获得积分10
22秒前
22秒前
共享精神应助卖萌的秋田采纳,获得10
23秒前
24秒前
阿钉发布了新的文献求助10
26秒前
26秒前
tannie完成签到 ,获得积分10
28秒前
30秒前
LJJ发布了新的文献求助10
31秒前
33秒前
英俊的铭应助qqq采纳,获得10
33秒前
Xw完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173