亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Network Detection of Axillary Lymph Node Metastasis Using Standard Clinical Breast MRI

医学 乳腺癌 接收机工作特性 放射科 腋窝淋巴结 磁共振成像 卷积神经网络 淋巴结 阶段(地层学) 转移 腋窝 放射治疗计划 癌症 内科学 放射治疗 人工智能 计算机科学 古生物学 生物
作者
Thomas Ren,Renee Cattell,Hongyi Duanmu,Pauline Huang,Haifang Li,R. Vanguri,Michael Z. Liu,Sachin Jambawalikar,Richard Ha,Fusheng Wang,Jules Cohen,Clifford A. Bernstein,Lev Bangiyev,Timothy Q. Duong
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:20 (3): e301-e308 被引量:47
标识
DOI:10.1016/j.clbc.2019.11.009
摘要

Background Axillary lymph node status is important for breast cancer staging and treatment planning as the majority of breast cancer metastasis spreads through the axillary lymph nodes. There is currently no reliable noninvasive imaging method to detect nodal metastasis associated with breast cancer. Materials and Methods Magnetic resonance imaging (MRI) data were those from the peak contrast dynamic image from 1.5 Tesla MRI scanners at the pre-neoadjuvant chemotherapy stage. Data consisted of 66 abnormal nodes from 38 patients and 193 normal nodes from 61 patients. Abnormal nodes were those determined by expert radiologist based on 18Fluorodeoxyglucose positron emission tomography images. Normal nodes were those with negative diagnosis of breast cancer. The convolutional neural network consisted of 5 convolutional layers with filters from 16 to 128. Receiver operating characteristic analysis was performed to evaluate prediction performance. For comparison, an expert radiologist also scored the same nodes as normal or abnormal. Results The convolutional neural network model yielded a specificity of 79.3% ± 5.1%, sensitivity of 92.1% ± 2.9%, positive predictive value of 76.9% ± 4.0%, negative predictive value of 93.3% ± 1.9%, accuracy of 84.8% ± 2.4%, and receiver operating characteristic area under the curve of 0.91 ± 0.02 for the validation data set. These results compared favorably with scoring by radiologists (accuracy of 78%). Conclusion The results are encouraging and suggest that this approach may prove useful for classifying lymph node status on MRI in clinical settings in patients with breast cancer, although additional studies are needed before routine clinical use can be realized. This approach has the potential to ultimately be a noninvasive alternative to lymph node biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
云朵发布了新的文献求助30
1秒前
卡耐基完成签到,获得积分10
4秒前
5秒前
顾矜应助王文艺采纳,获得10
5秒前
007完成签到 ,获得积分10
6秒前
6秒前
早上坏完成签到,获得积分10
8秒前
14秒前
18秒前
Akim应助温暖水云采纳,获得10
19秒前
aprise完成签到 ,获得积分10
19秒前
时间尘埃发布了新的文献求助10
20秒前
YifanWang完成签到,获得积分0
22秒前
仰望星空发布了新的文献求助10
25秒前
27秒前
YH完成签到,获得积分10
28秒前
徐继军发布了新的文献求助10
29秒前
仰望星空完成签到,获得积分10
33秒前
33秒前
GingerF完成签到,获得积分0
34秒前
轻松冰淇淋完成签到,获得积分10
43秒前
44秒前
jkj发布了新的文献求助10
45秒前
52秒前
踏实的傲之完成签到,获得积分20
52秒前
54秒前
温暖水云发布了新的文献求助10
57秒前
852应助壹玖一陆采纳,获得10
1分钟前
wanna发布了新的文献求助10
1分钟前
1分钟前
完美谷秋完成签到 ,获得积分10
1分钟前
突突leolo发布了新的文献求助10
1分钟前
HOXXXiii完成签到,获得积分10
1分钟前
1分钟前
隐形曼青应助时间尘埃采纳,获得10
1分钟前
1分钟前
l900发布了新的文献求助20
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493810
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434715
捐赠科研通 4524218
什么是DOI,文献DOI怎么找? 2478734
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490