亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Network Detection of Axillary Lymph Node Metastasis Using Standard Clinical Breast MRI

医学 乳腺癌 接收机工作特性 放射科 腋窝淋巴结 磁共振成像 卷积神经网络 淋巴结 阶段(地层学) 转移 腋窝 放射治疗计划 癌症 内科学 放射治疗 人工智能 计算机科学 古生物学 生物
作者
Thomas Ren,Renee Cattell,Hongyi Duanmu,Pauline Huang,Haifang Li,R. Vanguri,Michael Z. Liu,Sachin Jambawalikar,Richard Ha,Fusheng Wang,Jules Cohen,Clifford A. Bernstein,Lev Bangiyev,Timothy Q. Duong
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:20 (3): e301-e308 被引量:47
标识
DOI:10.1016/j.clbc.2019.11.009
摘要

Background Axillary lymph node status is important for breast cancer staging and treatment planning as the majority of breast cancer metastasis spreads through the axillary lymph nodes. There is currently no reliable noninvasive imaging method to detect nodal metastasis associated with breast cancer. Materials and Methods Magnetic resonance imaging (MRI) data were those from the peak contrast dynamic image from 1.5 Tesla MRI scanners at the pre-neoadjuvant chemotherapy stage. Data consisted of 66 abnormal nodes from 38 patients and 193 normal nodes from 61 patients. Abnormal nodes were those determined by expert radiologist based on 18Fluorodeoxyglucose positron emission tomography images. Normal nodes were those with negative diagnosis of breast cancer. The convolutional neural network consisted of 5 convolutional layers with filters from 16 to 128. Receiver operating characteristic analysis was performed to evaluate prediction performance. For comparison, an expert radiologist also scored the same nodes as normal or abnormal. Results The convolutional neural network model yielded a specificity of 79.3% ± 5.1%, sensitivity of 92.1% ± 2.9%, positive predictive value of 76.9% ± 4.0%, negative predictive value of 93.3% ± 1.9%, accuracy of 84.8% ± 2.4%, and receiver operating characteristic area under the curve of 0.91 ± 0.02 for the validation data set. These results compared favorably with scoring by radiologists (accuracy of 78%). Conclusion The results are encouraging and suggest that this approach may prove useful for classifying lymph node status on MRI in clinical settings in patients with breast cancer, although additional studies are needed before routine clinical use can be realized. This approach has the potential to ultimately be a noninvasive alternative to lymph node biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
SCT发布了新的文献求助10
11秒前
L_x完成签到 ,获得积分10
14秒前
lawrenceip0926完成签到,获得积分10
17秒前
17秒前
SCT完成签到,获得积分10
19秒前
Joven发布了新的文献求助10
23秒前
Joven完成签到,获得积分20
30秒前
在水一方完成签到 ,获得积分0
38秒前
39秒前
Jasper应助小尾巴采纳,获得10
41秒前
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
43秒前
43秒前
惠民发布了新的文献求助10
44秒前
45秒前
飞翔的发布了新的文献求助10
48秒前
1分钟前
柔弱成危发布了新的文献求助10
1分钟前
科研猫头鹰完成签到,获得积分10
1分钟前
不安的裘完成签到 ,获得积分10
1分钟前
Lucas应助morena采纳,获得10
1分钟前
大史完成签到 ,获得积分10
1分钟前
1分钟前
wyb发布了新的文献求助10
2分钟前
橙橙完成签到,获得积分10
2分钟前
千羽飞完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Shaangueuropa发布了新的文献求助30
2分钟前
飞翔的发布了新的文献求助10
2分钟前
隐形曼青应助江上烟采纳,获得10
2分钟前
Shaangueuropa完成签到,获得积分10
2分钟前
Billy应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
酸奶应助科研通管家采纳,获得10
2分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Free Will in the Flesh 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081568
求助须知:如何正确求助?哪些是违规求助? 2734319
关于积分的说明 7532599
捐赠科研通 2383865
什么是DOI,文献DOI怎么找? 1264044
科研通“疑难数据库(出版商)”最低求助积分说明 612506
版权声明 597577