Convolutional Neural Network Detection of Axillary Lymph Node Metastasis Using Standard Clinical Breast MRI

医学 乳腺癌 接收机工作特性 放射科 腋窝淋巴结 磁共振成像 卷积神经网络 淋巴结 阶段(地层学) 转移 腋窝 放射治疗计划 癌症 内科学 放射治疗 人工智能 计算机科学 古生物学 生物
作者
Thomas Ren,Renee Cattell,Hongyi Duanmu,Pauline Huang,Haifang Li,R. Vanguri,Michael Z. Liu,Sachin Jambawalikar,Richard Ha,Fusheng Wang,Jules Cohen,Clifford A. Bernstein,Lev Bangiyev,Timothy Q. Duong
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:20 (3): e301-e308 被引量:47
标识
DOI:10.1016/j.clbc.2019.11.009
摘要

Background Axillary lymph node status is important for breast cancer staging and treatment planning as the majority of breast cancer metastasis spreads through the axillary lymph nodes. There is currently no reliable noninvasive imaging method to detect nodal metastasis associated with breast cancer. Materials and Methods Magnetic resonance imaging (MRI) data were those from the peak contrast dynamic image from 1.5 Tesla MRI scanners at the pre-neoadjuvant chemotherapy stage. Data consisted of 66 abnormal nodes from 38 patients and 193 normal nodes from 61 patients. Abnormal nodes were those determined by expert radiologist based on 18Fluorodeoxyglucose positron emission tomography images. Normal nodes were those with negative diagnosis of breast cancer. The convolutional neural network consisted of 5 convolutional layers with filters from 16 to 128. Receiver operating characteristic analysis was performed to evaluate prediction performance. For comparison, an expert radiologist also scored the same nodes as normal or abnormal. Results The convolutional neural network model yielded a specificity of 79.3% ± 5.1%, sensitivity of 92.1% ± 2.9%, positive predictive value of 76.9% ± 4.0%, negative predictive value of 93.3% ± 1.9%, accuracy of 84.8% ± 2.4%, and receiver operating characteristic area under the curve of 0.91 ± 0.02 for the validation data set. These results compared favorably with scoring by radiologists (accuracy of 78%). Conclusion The results are encouraging and suggest that this approach may prove useful for classifying lymph node status on MRI in clinical settings in patients with breast cancer, although additional studies are needed before routine clinical use can be realized. This approach has the potential to ultimately be a noninvasive alternative to lymph node biopsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alberat完成签到,获得积分10
刚刚
细腻的惜梦完成签到,获得积分10
刚刚
刚刚
万能图书馆应助123采纳,获得10
1秒前
1秒前
爱吃橙子完成签到 ,获得积分10
1秒前
噜噜噜完成签到,获得积分10
1秒前
1秒前
月是故乡明完成签到,获得积分10
2秒前
柳叶完成签到,获得积分10
3秒前
3秒前
han发布了新的文献求助10
3秒前
zzzllove发布了新的文献求助10
3秒前
3秒前
Ziang_Liu完成签到,获得积分10
4秒前
Daisy发布了新的文献求助10
4秒前
SciGPT应助ceeray23采纳,获得20
4秒前
赘婿应助在和采纳,获得10
5秒前
weifengzhong完成签到,获得积分10
6秒前
djh完成签到,获得积分0
6秒前
6秒前
负责紊完成签到,获得积分10
6秒前
聪123完成签到,获得积分10
6秒前
Jasper应助YM采纳,获得10
6秒前
7秒前
7秒前
7秒前
小晖晖完成签到,获得积分10
7秒前
白兔完成签到,获得积分10
7秒前
Foch完成签到,获得积分10
7秒前
kk完成签到,获得积分10
7秒前
金咪发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
spencer177完成签到,获得积分10
9秒前
眼睛大忆曼完成签到,获得积分10
9秒前
zzzllove完成签到,获得积分10
9秒前
Zarc完成签到,获得积分10
10秒前
10秒前
Foch发布了新的文献求助10
10秒前
FashionBoy应助小猪乔治采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997