Individual-Based Transfer Learning for Dynamic Multiobjective Optimization

水准点(测量) 计算机科学 数学优化 趋同(经济学) 学习迁移 多目标优化 过程(计算) 最优化问题 人口 帕累托原理 人工智能 机器学习 数学 算法 社会学 人口学 操作系统 经济 经济增长 地理 大地测量学
作者
Min Jiang,Zhenzhong Wang,Shihui Guo,Xing Gao,Kay Chen Tan
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (10): 4968-4981 被引量:102
标识
DOI:10.1109/tcyb.2020.3017049
摘要

Dynamic multiobjective optimization problems (DMOPs) are characterized by optimization functions that change over time in varying environments. The DMOP is challenging because it requires the varying Pareto-optimal sets (POSs) to be tracked quickly and accurately during the optimization process. In recent years, transfer learning has been proven to be one of the effective means to solve dynamic multiobjective optimization. However, the negative transfer will lead the search of finding the POS to a wrong direction, which greatly reduces the efficiency of solving optimization problems. Minimizing the occurrence of negative transfer is thus critical for the use of transfer learning in solving DMOPs. In this article, we propose a new individual-based transfer learning method, called an individual transfer-based dynamic multiobjective evolutionary algorithm (IT-DMOEA), for solving DMOPs. Unlike existing approaches, it uses a presearch strategy to filter out some high-quality individuals with better diversity so that it can avoid negative transfer caused by individual aggregation. On this basis, an individual-based transfer learning technique is applied to accelerate the construction of an initial population. The merit of the IT-DMOEA method is that it combines different strategies in maintaining the advantages of transfer learning methods as well as avoiding the occurrence of negative transfer; thereby greatly improving the quality of solutions and convergence speed. The experimental results show that the proposed IT-DMOEA approach can considerably improve the quality of solutions and convergence speed compared to several state-of-the-art algorithms based on different benchmark problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅忆枫完成签到,获得积分10
刚刚
健忘幻儿发布了新的文献求助10
1秒前
1秒前
2秒前
LXM发布了新的文献求助10
2秒前
hejilianglove发布了新的文献求助10
4秒前
夏秋完成签到 ,获得积分10
4秒前
5秒前
Everything完成签到,获得积分10
5秒前
6秒前
8秒前
搜集达人应助森气采纳,获得10
9秒前
Hello应助CNS天天有采纳,获得10
10秒前
超帅忆枫发布了新的文献求助10
10秒前
Andy_Cheung应助www采纳,获得10
11秒前
11秒前
11秒前
微笑凡之完成签到 ,获得积分10
11秒前
深情安青应助junlin采纳,获得10
12秒前
科研通AI5应助十二曲阑干采纳,获得10
13秒前
13秒前
14秒前
小雨完成签到,获得积分10
16秒前
陈二雷完成签到,获得积分10
17秒前
11发布了新的文献求助10
18秒前
宋小姐冲鸭发布了新的文献求助150
18秒前
18秒前
森气发布了新的文献求助10
20秒前
20秒前
传奇3应助Yy采纳,获得10
20秒前
NexusExplorer应助明理的白风采纳,获得10
20秒前
传奇3应助豪士赋采纳,获得10
21秒前
21秒前
qiqi发布了新的文献求助10
21秒前
22秒前
LXM完成签到,获得积分10
22秒前
英姑应助小火采纳,获得10
22秒前
Owen应助李燕君采纳,获得10
22秒前
超级柜子发布了新的文献求助10
23秒前
23秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712091
求助须知:如何正确求助?哪些是违规求助? 3260294
关于积分的说明 9913510
捐赠科研通 2973623
什么是DOI,文献DOI怎么找? 1630739
邀请新用户注册赠送积分活动 773566
科研通“疑难数据库(出版商)”最低求助积分说明 744314