A morphing-Based 3D point cloud reconstruction framework for medical image processing

变形 点云 计算机科学 体素 插值(计算机图形学) 计算机视觉 曲面重建 三维重建 人工智能 点(几何) 三维建模 算法 曲面(拓扑) 图像(数学) 数学 几何学
作者
Qiangqiang Cheng,Pengyu Sun,Chunsheng Yang,Yu-Bin Yang,Peter Liu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:193: 105495-105495 被引量:29
标识
DOI:10.1016/j.cmpb.2020.105495
摘要

Background and Objective: In the virtual surgery simulation system, the reconstruction of a highly precise soft tissue 3D model is an effective method to improve the user's visual telepresence. However, the traditional point cloud generation method based on subdivision and filling is unsatisfactory due to its low accuracy and slow speed. Methods: To address this problem, we present a novel 3D point cloud reconstructing model based on Morphing. The 3D surface model of soft tissue (live) is obtained from a series of 2D CT images using Mimics. The 3D voxel model of soft tissue is reconstructed through a sequential change of the 3D surface model by utilizing Morphing. A nonlinear interpolation method is used to fit the irregular shape of the model and improve simulation accuracy. Results: The point cloud model builds from discrete points, avoiding the problems of instability and computational complexity, which are inherent in both the surface and volume models for soft tissue. Compared with the volumetric subdividing and voxel filling method, the simulation results show that the 3D cloud model reconstructed based on Morphing is more fast, accurate and consistent with the real soft tissue. Conclusions: The simulating experiment of soft tissue deformation using 3D point cloud model which reconstructed using moprhing proved our method is effective and correct.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fareth发布了新的文献求助10
刚刚
Air云完成签到,获得积分10
刚刚
PakhoPHD完成签到 ,获得积分10
刚刚
玉麒麟完成签到,获得积分0
1秒前
Angela完成签到,获得积分10
1秒前
希望天下0贩的0应助小吴采纳,获得10
1秒前
1秒前
lilac应助苹果煎饼采纳,获得10
2秒前
大模型应助百宝采纳,获得10
2秒前
怕黑砖头完成签到,获得积分10
3秒前
4秒前
4秒前
花玥鹿完成签到,获得积分10
4秒前
cybbbbbb完成签到,获得积分10
4秒前
咳咳完成签到,获得积分10
4秒前
5秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
5秒前
5秒前
Fareth完成签到,获得积分10
5秒前
领导范儿应助故意的绿竹采纳,获得10
5秒前
5秒前
复杂谷蓝完成签到 ,获得积分10
5秒前
6秒前
迟大猫应助于某人采纳,获得10
6秒前
qingkong发布了新的文献求助10
7秒前
7秒前
7秒前
细腻白柏完成签到,获得积分10
7秒前
7秒前
麦满分完成签到,获得积分10
8秒前
长度2到发布了新的文献求助10
8秒前
Alicia完成签到,获得积分10
9秒前
西瓜大虫完成签到,获得积分10
9秒前
害羞聋五发布了新的文献求助10
10秒前
prosperp完成签到,获得积分0
10秒前
Hongsong完成签到,获得积分20
10秒前
prosperp应助背侧丘脑采纳,获得10
11秒前
好好发布了新的文献求助10
11秒前
gaos发布了新的文献求助10
11秒前
einuo发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678