过电位
材料科学
电催化剂
塔菲尔方程
双金属片
化学工程
催化作用
纳米技术
无机化学
金属
物理化学
冶金
电化学
化学
有机化学
电极
工程类
作者
Lin Wang,Zhongjian Li,Kexin Wang,Qizhou Dai,Chaojun Lei,Bin Yang,Qinghua Zhang,Lecheng Lei,Michael K.H. Leung,Yang Hou
出处
期刊:Nano Energy
[Elsevier]
日期:2020-04-27
卷期号:74: 104850-104850
被引量:157
标识
DOI:10.1016/j.nanoen.2020.104850
摘要
Designing highly active transition metal carbides based electrocatalysts to substitute for the state-of-the-art noble-metal materials for hydrogen evolution reaction (HER) over a wide pH range is still a crucial challenge. Herein, we reported a novel 2D hybrid electrocatalyst containing Mo-doped WC core with particle size of ~5 nm embedded into N-doped carbon shells ([email protected]) through a carbonization treatment of Mo-doped W/Zn bimetallic-imidazolate frameworks. Benefiting from large surface area and optimized electronic structure, the achieved [email protected] hybrid displayed a low overpotential of 179 mV at 10 mA cm−2 with a small Tafel slope of 81 mV dec−1 for HER in base, showing almost the best performance among all previously reported WC-based hybrid HER electrocatalysts. This [email protected] hybrid also delivered robust HER catalytic activities in both acidic and neutral media. Experimental observations and theoretical calculations demonstrated that the d-band center of W in [email protected] hybrid was obviously downshifted after Mo dopants, which was beneficial to modulate the electronic structure of the W centers and thereby facilitated the H desorption, thus boosting hydrogen generation. Acting as a cathode in alkaline-acid Zn–H2O fuel cell, the [email protected] hybrid delivered a power density of up to 41.4 mW cm−2 and maintained a long-term stability for H2 generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI