亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning

工作量 线性判别分析 支持向量机 计算机科学 心率变异性 人工智能 任务(项目管理) 心率 机器学习 模拟 语音识别 模式识别(心理学) 工程类 血压 操作系统 系统工程 医学 放射科
作者
Yi Ding,Yaqin Cao,Vincent G. Duffy,Yi Wang,Xuefeng Zhang
出处
期刊:Ergonomics [Informa]
卷期号:63 (7): 896-908 被引量:76
标识
DOI:10.1080/00140139.2020.1759699
摘要

This study attempted to multimodally measure mental workload and validate indicators for estimating mental workload. A simulated computer work composed of mental arithmetic tasks with different levels of difficulty was designed and used in the experiment to measure physiological signals (heart rate, heart rate variability, electromyography, electrodermal activity, and respiration), subjective ratings of mental workload (the NASA Task Load Index), and task performance. The indices from electrodermal activity and respiration had a significant increment as task difficulty increased. There were no significant differences between the average heart rate and the low-frequency/high-frequency ratio among tasks. The classification of mental workload using combined indices as inputs showed that classification models combining physiological signals and task performance can reach satisfying accuracy at 96.4% and an accuracy of 78.3% when only using physiological indices as inputs. The present study also showed that ECG and EDA signals have good discriminating power for mental workload detection. Practitioner summary: The methods used in this study could be applied to office workers, and the findings provide preliminary support and theoretical exploration for follow-up early mental workload detection systems, whose implementation in the real world could beneficially impact worker health and company efficiency. Abbreviations: NASA-TLX: the national aeronautics and space administration-task load index; ECG: electrocardiographic; EDA: electrodermal activity; EEG: electroencephalogram; LDA: linear discriminant analysis; SVM: support vector machine; KNN: k-nearest neighbor; ANNs: artificial neural networks; EMG: electromyography; PPG: photoplethysmography; SD: standard deviation; BMI: body mass index; DSSQ: dundee stress state questionnaire; ANOVA: analysis of variance; SC: skin conductance; RMS: root mean square; AVHR: the average heart rate; HR: heart rate; LF/HF: the ratio between the low frequencies band and the high frequency band; PSD: power spectral density; MF: median frequency; HRV: heart rate variability; BPNN: backpropagation neural network
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢小强发布了新的文献求助10
2秒前
Hillson完成签到,获得积分10
3秒前
5秒前
小正完成签到,获得积分10
12秒前
小二郎应助qiqi1111采纳,获得10
22秒前
kluberos完成签到 ,获得积分10
30秒前
34秒前
35秒前
36秒前
qiqi1111发布了新的文献求助10
37秒前
李健应助读书的时候采纳,获得10
37秒前
土豆发布了新的文献求助10
39秒前
58秒前
58秒前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
支雨泽完成签到,获得积分10
1分钟前
无极微光应助科研通管家采纳,获得53
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
倩倩14发布了新的文献求助10
1分钟前
vantie完成签到 ,获得积分10
1分钟前
李甄好应助读书的时候采纳,获得10
1分钟前
1分钟前
1分钟前
土豆完成签到,获得积分10
1分钟前
小蘑菇应助123采纳,获得10
1分钟前
JamesPei应助一见喜采纳,获得10
2分钟前
倩倩14完成签到,获得积分10
2分钟前
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
章鱼完成签到,获得积分10
2分钟前
2分钟前
一见喜发布了新的文献求助10
2分钟前
米奇妙妙屋完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731901
求助须知:如何正确求助?哪些是违规求助? 5333980
关于积分的说明 15321767
捐赠科研通 4877719
什么是DOI,文献DOI怎么找? 2620550
邀请新用户注册赠送积分活动 1569861
关于科研通互助平台的介绍 1526352