已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison of Cellular Morphological Descriptors and Molecular Fingerprints for the Prediction of Cytotoxicity- and Proliferation-Related Assays

人工智能 模式识别(心理学) 随机森林 分子描述符 交叉验证 计算机科学 计算生物学 生物系统 化学 生物 机器学习 数量结构-活动关系
作者
Srijit Seal,Hongbin Yang,Luis Vollmers,Andreas Bender
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:34 (2): 422-437 被引量:31
标识
DOI:10.1021/acs.chemrestox.0c00303
摘要

Cell morphology features, such as those from the Cell Painting assay, can be generated at relatively low costs and represent versatile biological descriptors of a system and thereby compound response. In this study, we explored cell morphology descriptors and molecular fingerprints, separately and in combination, for the prediction of cytotoxicity- and proliferation-related in vitro assay endpoints. We selected 135 compounds from the MoleculeNet ToxCast benchmark data set which were annotated with Cell Painting readouts, where the relatively small size of the data set is due to the overlap of required annotations. We trained Random Forest classification models using nested cross-validation and Cell Painting descriptors, Morgan and ErG fingerprints, and their combinations. While using leave-one-cluster-out cross-validation (with clusters based on physicochemical descriptors), models using Cell Painting descriptors achieved higher average performance over all assays (Balanced Accuracy of 0.65, Matthews Correlation Coefficient of 0.28, and AUC-ROC of 0.71) compared to models using ErG fingerprints (BA 0.55, MCC 0.09, and AUC-ROC 0.60) and Morgan fingerprints alone (BA 0.54, MCC 0.06, and AUC-ROC 0.56). While using random shuffle splits, the combination of Cell Painting descriptors with ErG and Morgan fingerprints further improved balanced accuracy on average by 8.9% (in 9 out of 12 assays) and 23.4% (in 8 out of 12 assays) compared to using only ErG and Morgan fingerprints, respectively. Regarding feature importance, Cell Painting descriptors related to nuclei texture, granularity of cells, and cytoplasm as well as cell neighbors and radial distributions were identified to be most contributing, which is plausible given the endpoint considered. We conclude that cell morphological descriptors contain complementary information to molecular fingerprints which can be used to improve the performance of predictive cytotoxicity models, in particular in areas of novel structural space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lzlnb完成签到 ,获得积分10
1秒前
孤独的沉鱼完成签到 ,获得积分10
2秒前
4秒前
6秒前
汉堡包应助南风采纳,获得30
6秒前
需要交流的铅笔完成签到 ,获得积分10
6秒前
6秒前
8秒前
幽默不愁发布了新的文献求助10
9秒前
10秒前
11秒前
13秒前
笨笨西牛完成签到 ,获得积分10
17秒前
浦肯野应助菜鸡5号采纳,获得20
17秒前
南风发布了新的文献求助30
17秒前
坦率的松完成签到 ,获得积分10
18秒前
20秒前
jailbreaker完成签到 ,获得积分10
22秒前
23秒前
24秒前
26秒前
就拒绝内耗完成签到,获得积分20
30秒前
floaoat完成签到,获得积分10
31秒前
31秒前
Shawn_54发布了新的文献求助30
32秒前
krisliu完成签到 ,获得积分10
34秒前
35秒前
朴素元珊完成签到,获得积分10
35秒前
吡咯爱成环应助北极熊采纳,获得10
39秒前
含糊的泥猴桃完成签到 ,获得积分10
40秒前
科研通AI40应助清爽的音响采纳,获得10
42秒前
44秒前
123完成签到,获得积分10
47秒前
49秒前
50秒前
neilphilosci完成签到 ,获得积分10
51秒前
JIAO完成签到,获得积分10
52秒前
52秒前
满意人英完成签到,获得积分10
52秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471259
求助须知:如何正确求助?哪些是违规求助? 3064129
关于积分的说明 9087605
捐赠科研通 2754938
什么是DOI,文献DOI怎么找? 1511647
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698423