Comparison of Cellular Morphological Descriptors and Molecular Fingerprints for the Prediction of Cytotoxicity- and Proliferation-Related Assays

人工智能 模式识别(心理学) 随机森林 分子描述符 交叉验证 计算机科学 计算生物学 生物系统 化学 生物 机器学习 数量结构-活动关系
作者
Srijit Seal,Hongbin Yang,Luis Vollmers,Andreas Bender
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:34 (2): 422-437 被引量:31
标识
DOI:10.1021/acs.chemrestox.0c00303
摘要

Cell morphology features, such as those from the Cell Painting assay, can be generated at relatively low costs and represent versatile biological descriptors of a system and thereby compound response. In this study, we explored cell morphology descriptors and molecular fingerprints, separately and in combination, for the prediction of cytotoxicity- and proliferation-related in vitro assay endpoints. We selected 135 compounds from the MoleculeNet ToxCast benchmark data set which were annotated with Cell Painting readouts, where the relatively small size of the data set is due to the overlap of required annotations. We trained Random Forest classification models using nested cross-validation and Cell Painting descriptors, Morgan and ErG fingerprints, and their combinations. While using leave-one-cluster-out cross-validation (with clusters based on physicochemical descriptors), models using Cell Painting descriptors achieved higher average performance over all assays (Balanced Accuracy of 0.65, Matthews Correlation Coefficient of 0.28, and AUC-ROC of 0.71) compared to models using ErG fingerprints (BA 0.55, MCC 0.09, and AUC-ROC 0.60) and Morgan fingerprints alone (BA 0.54, MCC 0.06, and AUC-ROC 0.56). While using random shuffle splits, the combination of Cell Painting descriptors with ErG and Morgan fingerprints further improved balanced accuracy on average by 8.9% (in 9 out of 12 assays) and 23.4% (in 8 out of 12 assays) compared to using only ErG and Morgan fingerprints, respectively. Regarding feature importance, Cell Painting descriptors related to nuclei texture, granularity of cells, and cytoplasm as well as cell neighbors and radial distributions were identified to be most contributing, which is plausible given the endpoint considered. We conclude that cell morphological descriptors contain complementary information to molecular fingerprints which can be used to improve the performance of predictive cytotoxicity models, in particular in areas of novel structural space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助羽言采纳,获得10
刚刚
1秒前
支鸿发布了新的文献求助10
1秒前
Ava应助小乙大夫采纳,获得10
2秒前
自由的香菇完成签到 ,获得积分10
2秒前
Akim应助羊小旸采纳,获得10
2秒前
舒适香露完成签到,获得积分10
2秒前
3秒前
。。完成签到,获得积分10
3秒前
小白完成签到,获得积分10
3秒前
pluto应助一一采纳,获得10
4秒前
4秒前
jinxing完成签到,获得积分10
5秒前
科研通AI5应助reap采纳,获得10
5秒前
JunJun完成签到 ,获得积分10
6秒前
1+1应助达不溜采纳,获得10
6秒前
。。发布了新的文献求助10
6秒前
菲菲公主完成签到,获得积分10
7秒前
大鲟完成签到,获得积分10
7秒前
敏静发布了新的文献求助10
8秒前
8秒前
bkagyin应助jinxing采纳,获得10
9秒前
深情安青应助tg2024采纳,获得10
10秒前
11秒前
suqiongwu完成签到,获得积分10
11秒前
11秒前
毛毛完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
小白发布了新的文献求助10
12秒前
Sky完成签到,获得积分10
13秒前
慕青应助二东采纳,获得10
14秒前
迅速海云完成签到,获得积分10
14秒前
想毕业的小橙子完成签到,获得积分10
14秒前
mary完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
Hayat发布了新的文献求助30
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759125
求助须知:如何正确求助?哪些是违规求助? 3302180
关于积分的说明 10121269
捐赠科研通 3016580
什么是DOI,文献DOI怎么找? 1656512
邀请新用户注册赠送积分活动 790521
科研通“疑难数据库(出版商)”最低求助积分说明 753886