Bayesian reaction optimization as a tool for chemical synthesis

贝叶斯优化 计算机科学 水准点(测量) 工程优化 机器学习 贝叶斯概率 最优化问题 人工智能 算法 大地测量学 地理
作者
Benjamin J. Shields,Jason M. Stevens,Jun Li,Marvin Parasram,Farhan Damani,Jesus I. Martinez Alvarado,Jacob M. Janey,Ryan P. Adams,Abigail G. Doyle
出处
期刊:Nature [Springer Nature]
卷期号:590 (7844): 89-96 被引量:875
标识
DOI:10.1038/s41586-021-03213-y
摘要

Reaction optimization is fundamental to synthetic chemistry, from optimizing the yield of industrial processes to selecting conditions for the preparation of medicinal candidates1. Likewise, parameter optimization is omnipresent in artificial intelligence, from tuning virtual personal assistants to training social media and product recommendation systems2. Owing to the high cost associated with carrying out experiments, scientists in both areas set numerous (hyper)parameter values by evaluating only a small subset of the possible configurations. Bayesian optimization, an iterative response surface-based global optimization algorithm, has demonstrated exceptional performance in the tuning of machine learning models3. Bayesian optimization has also been recently applied in chemistry4,5,6,7,8,9; however, its application and assessment for reaction optimization in synthetic chemistry has not been investigated. Here we report the development of a framework for Bayesian reaction optimization and an open-source software tool that allows chemists to easily integrate state-of-the-art optimization algorithms into their everyday laboratory practices. We collect a large benchmark dataset for a palladium-catalysed direct arylation reaction, perform a systematic study of Bayesian optimization compared to human decision-making in reaction optimization, and apply Bayesian optimization to two real-world optimization efforts (Mitsunobu and deoxyfluorination reactions). Benchmarking is accomplished via an online game that links the decisions made by expert chemists and engineers to real experiments run in the laboratory. Our findings demonstrate that Bayesian optimization outperforms human decisionmaking in both average optimization efficiency (number of experiments) and consistency (variance of outcome against initially available data). Overall, our studies suggest that adopting Bayesian optimization methods into everyday laboratory practices could facilitate more efficient synthesis of functional chemicals by enabling better-informed, data-driven decisions about which experiments to run.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
赵立宁完成签到,获得积分10
3秒前
我爱学习发布了新的文献求助100
3秒前
北风北风完成签到 ,获得积分10
3秒前
任性的跳跳糖完成签到,获得积分20
3秒前
4秒前
威武的大树完成签到,获得积分10
4秒前
NexusExplorer应助沉静的曼荷采纳,获得10
5秒前
5秒前
milk发布了新的文献求助10
6秒前
南风南下发布了新的文献求助30
6秒前
RED发布了新的文献求助10
7秒前
庄建煌发布了新的文献求助10
8秒前
8秒前
阿肖呀发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
bkagyin应助学术底层fw采纳,获得10
11秒前
BowieHuang应助细腻翠霜采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
蓝柚应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
12秒前
英俊的铭应助科研通管家采纳,获得20
12秒前
大模型应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
12秒前
受伤冰菱完成签到,获得积分10
13秒前
思源应助nn采纳,获得10
14秒前
14秒前
xin发布了新的文献求助10
15秒前
16秒前
16秒前
白洛寒发布了新的文献求助10
17秒前
我主沉浮完成签到,获得积分10
17秒前
liw完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578711
求助须知:如何正确求助?哪些是违规求助? 4663506
关于积分的说明 14746896
捐赠科研通 4604465
什么是DOI,文献DOI怎么找? 2526940
邀请新用户注册赠送积分活动 1496536
关于科研通互助平台的介绍 1465830