Bayesian reaction optimization as a tool for chemical synthesis

贝叶斯优化 计算机科学 水准点(测量) 工程优化 机器学习 贝叶斯概率 最优化问题 人工智能 算法 大地测量学 地理
作者
Benjamin J. Shields,Jason M. Stevens,Jun Li,Marvin Parasram,Farhan Damani,Jesus I. Martinez Alvarado,Jacob M. Janey,Ryan P. Adams,Abigail G. Doyle
出处
期刊:Nature [Springer Nature]
卷期号:590 (7844): 89-96 被引量:860
标识
DOI:10.1038/s41586-021-03213-y
摘要

Reaction optimization is fundamental to synthetic chemistry, from optimizing the yield of industrial processes to selecting conditions for the preparation of medicinal candidates1. Likewise, parameter optimization is omnipresent in artificial intelligence, from tuning virtual personal assistants to training social media and product recommendation systems2. Owing to the high cost associated with carrying out experiments, scientists in both areas set numerous (hyper)parameter values by evaluating only a small subset of the possible configurations. Bayesian optimization, an iterative response surface-based global optimization algorithm, has demonstrated exceptional performance in the tuning of machine learning models3. Bayesian optimization has also been recently applied in chemistry4,5,6,7,8,9; however, its application and assessment for reaction optimization in synthetic chemistry has not been investigated. Here we report the development of a framework for Bayesian reaction optimization and an open-source software tool that allows chemists to easily integrate state-of-the-art optimization algorithms into their everyday laboratory practices. We collect a large benchmark dataset for a palladium-catalysed direct arylation reaction, perform a systematic study of Bayesian optimization compared to human decision-making in reaction optimization, and apply Bayesian optimization to two real-world optimization efforts (Mitsunobu and deoxyfluorination reactions). Benchmarking is accomplished via an online game that links the decisions made by expert chemists and engineers to real experiments run in the laboratory. Our findings demonstrate that Bayesian optimization outperforms human decisionmaking in both average optimization efficiency (number of experiments) and consistency (variance of outcome against initially available data). Overall, our studies suggest that adopting Bayesian optimization methods into everyday laboratory practices could facilitate more efficient synthesis of functional chemicals by enabling better-informed, data-driven decisions about which experiments to run.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄丹璐发布了新的文献求助10
刚刚
刚刚
脑洞疼应助科研新牛马采纳,获得10
2秒前
风起发布了新的文献求助10
4秒前
song完成签到,获得积分10
6秒前
橘子的哈哈怪完成签到,获得积分10
7秒前
Hello应助十七采纳,获得10
10秒前
Komorebi完成签到 ,获得积分10
11秒前
韬奋!完成签到,获得积分0
17秒前
qy发布了新的文献求助10
17秒前
思源应助秋风知我意采纳,获得10
19秒前
20秒前
ZMJ完成签到,获得积分10
23秒前
Orange应助SJ7采纳,获得10
25秒前
酷酷的如波完成签到 ,获得积分10
27秒前
椰子发布了新的文献求助10
28秒前
我是老大应助只是听说采纳,获得10
29秒前
天亮polar完成签到,获得积分10
30秒前
32秒前
默默水蓝发布了新的文献求助10
32秒前
33秒前
虾虾发布了新的文献求助10
34秒前
35秒前
Lliu完成签到,获得积分10
35秒前
36秒前
TT001发布了新的文献求助30
39秒前
曼曼完成签到,获得积分10
41秒前
落寞代亦发布了新的文献求助10
41秒前
岳阳张震岳完成签到,获得积分10
41秒前
Linda发布了新的文献求助10
41秒前
42秒前
42秒前
44秒前
科研通AI2S应助曼曼采纳,获得30
44秒前
45秒前
阿良完成签到 ,获得积分10
45秒前
渊渟岳峙完成签到,获得积分10
46秒前
阿茗完成签到,获得积分10
47秒前
清秀的大山完成签到,获得积分10
48秒前
111111发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331