亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian reaction optimization as a tool for chemical synthesis

贝叶斯优化 计算机科学 水准点(测量) 工程优化 机器学习 贝叶斯概率 最优化问题 人工智能 算法 大地测量学 地理
作者
Benjamin J. Shields,Jason M. Stevens,Jun Li,Marvin Parasram,Farhan Damani,Jesus I. Martinez Alvarado,Jacob M. Janey,Ryan P. Adams,Abigail G. Doyle
出处
期刊:Nature [Springer Nature]
卷期号:590 (7844): 89-96 被引量:860
标识
DOI:10.1038/s41586-021-03213-y
摘要

Reaction optimization is fundamental to synthetic chemistry, from optimizing the yield of industrial processes to selecting conditions for the preparation of medicinal candidates1. Likewise, parameter optimization is omnipresent in artificial intelligence, from tuning virtual personal assistants to training social media and product recommendation systems2. Owing to the high cost associated with carrying out experiments, scientists in both areas set numerous (hyper)parameter values by evaluating only a small subset of the possible configurations. Bayesian optimization, an iterative response surface-based global optimization algorithm, has demonstrated exceptional performance in the tuning of machine learning models3. Bayesian optimization has also been recently applied in chemistry4,5,6,7,8,9; however, its application and assessment for reaction optimization in synthetic chemistry has not been investigated. Here we report the development of a framework for Bayesian reaction optimization and an open-source software tool that allows chemists to easily integrate state-of-the-art optimization algorithms into their everyday laboratory practices. We collect a large benchmark dataset for a palladium-catalysed direct arylation reaction, perform a systematic study of Bayesian optimization compared to human decision-making in reaction optimization, and apply Bayesian optimization to two real-world optimization efforts (Mitsunobu and deoxyfluorination reactions). Benchmarking is accomplished via an online game that links the decisions made by expert chemists and engineers to real experiments run in the laboratory. Our findings demonstrate that Bayesian optimization outperforms human decisionmaking in both average optimization efficiency (number of experiments) and consistency (variance of outcome against initially available data). Overall, our studies suggest that adopting Bayesian optimization methods into everyday laboratory practices could facilitate more efficient synthesis of functional chemicals by enabling better-informed, data-driven decisions about which experiments to run.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Nowind采纳,获得10
32秒前
fabius0351完成签到 ,获得积分10
33秒前
hhhjkkk完成签到,获得积分10
34秒前
IceWater发布了新的文献求助10
1分钟前
冷傲迎梅完成签到 ,获得积分10
1分钟前
1分钟前
IceWater完成签到,获得积分10
1分钟前
555发布了新的文献求助10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
喂我完成签到 ,获得积分10
2分钟前
2分钟前
rengar完成签到,获得积分10
2分钟前
123完成签到 ,获得积分10
2分钟前
星尘0314发布了新的文献求助80
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
科科完成签到 ,获得积分10
4分钟前
zzz发布了新的文献求助10
4分钟前
ferry发布了新的文献求助10
4分钟前
4分钟前
南寅完成签到,获得积分10
4分钟前
yzy发布了新的文献求助10
4分钟前
我是老大应助ferry采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI6应助sevry采纳,获得10
4分钟前
Tina完成签到 ,获得积分10
4分钟前
大模型应助yzy采纳,获得10
4分钟前
GIA完成签到,获得积分10
4分钟前
ferry完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
shennie发布了新的文献求助10
5分钟前
传奇3应助碝磩采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459211
求助须知:如何正确求助?哪些是违规求助? 4564918
关于积分的说明 14297309
捐赠科研通 4490019
什么是DOI,文献DOI怎么找? 2459491
邀请新用户注册赠送积分活动 1449140
关于科研通互助平台的介绍 1424640