亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian reaction optimization as a tool for chemical synthesis

贝叶斯优化 计算机科学 水准点(测量) 工程优化 机器学习 贝叶斯概率 最优化问题 人工智能 算法 大地测量学 地理
作者
Benjamin J. Shields,Jason M. Stevens,Jun Li,Marvin Parasram,Farhan Damani,Jesus I. Martinez Alvarado,Jacob M. Janey,Ryan P. Adams,Abigail G. Doyle
出处
期刊:Nature [Springer Nature]
卷期号:590 (7844): 89-96 被引量:531
标识
DOI:10.1038/s41586-021-03213-y
摘要

Reaction optimization is fundamental to synthetic chemistry, from optimizing the yield of industrial processes to selecting conditions for the preparation of medicinal candidates1. Likewise, parameter optimization is omnipresent in artificial intelligence, from tuning virtual personal assistants to training social media and product recommendation systems2. Owing to the high cost associated with carrying out experiments, scientists in both areas set numerous (hyper)parameter values by evaluating only a small subset of the possible configurations. Bayesian optimization, an iterative response surface-based global optimization algorithm, has demonstrated exceptional performance in the tuning of machine learning models3. Bayesian optimization has also been recently applied in chemistry4,5,6,7,8,9; however, its application and assessment for reaction optimization in synthetic chemistry has not been investigated. Here we report the development of a framework for Bayesian reaction optimization and an open-source software tool that allows chemists to easily integrate state-of-the-art optimization algorithms into their everyday laboratory practices. We collect a large benchmark dataset for a palladium-catalysed direct arylation reaction, perform a systematic study of Bayesian optimization compared to human decision-making in reaction optimization, and apply Bayesian optimization to two real-world optimization efforts (Mitsunobu and deoxyfluorination reactions). Benchmarking is accomplished via an online game that links the decisions made by expert chemists and engineers to real experiments run in the laboratory. Our findings demonstrate that Bayesian optimization outperforms human decisionmaking in both average optimization efficiency (number of experiments) and consistency (variance of outcome against initially available data). Overall, our studies suggest that adopting Bayesian optimization methods into everyday laboratory practices could facilitate more efficient synthesis of functional chemicals by enabling better-informed, data-driven decisions about which experiments to run.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啊是是是发布了新的文献求助10
4秒前
bingshuaizhao发布了新的文献求助10
8秒前
8秒前
10秒前
隐形耷发布了新的文献求助10
12秒前
zpli完成签到 ,获得积分10
14秒前
赘婿应助Langsam采纳,获得30
14秒前
花开发布了新的文献求助10
16秒前
慕青应助隐形耷采纳,获得10
25秒前
科研通AI2S应助花开采纳,获得10
30秒前
31秒前
bingshuaizhao完成签到,获得积分10
34秒前
Langsam发布了新的文献求助30
36秒前
花开完成签到,获得积分20
37秒前
姚老表完成签到,获得积分10
38秒前
mmyhn完成签到,获得积分10
1分钟前
阳阳阳完成签到 ,获得积分10
1分钟前
所所应助科研通管家采纳,获得30
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
云飞扬完成签到 ,获得积分10
1分钟前
xj发布了新的文献求助10
1分钟前
CATH完成签到 ,获得积分10
2分钟前
zqq完成签到,获得积分0
2分钟前
小马甲应助YUYUYU采纳,获得10
2分钟前
Arthur完成签到 ,获得积分10
2分钟前
河豚完成签到 ,获得积分10
3分钟前
早晚完成签到 ,获得积分10
3分钟前
3分钟前
CipherSage应助Langsam采纳,获得10
4分钟前
顾矜应助吃碗大米饭采纳,获得10
4分钟前
4分钟前
谢小盟完成签到 ,获得积分10
4分钟前
4分钟前
will214发布了新的文献求助10
4分钟前
高贵魂幽完成签到,获得积分10
4分钟前
有魅力寒凡完成签到,获得积分10
4分钟前
初雪平寒发布了新的文献求助10
5分钟前
初雪平寒完成签到,获得积分10
5分钟前
感动的醉波完成签到,获得积分10
5分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801908
关于积分的说明 7845974
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748