亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stratification of population in NHANES 2009–2014 based on exposure pattern of lead, cadmium, mercury, and arsenic and their association with cardiovascular, renal and respiratory outcomes

全国健康与营养检查调查 环境卫生 Mercury(编程语言) 人口 尿 医学 内科学 化学 计算机科学 有机化学 程序设计语言
作者
Xu Yao,Xu Steven Xu,Yaning Yang,Zhi Zheng Zhu,Zhao Zhu,Fangbiao Tao,Min Yuan
出处
期刊:Environment International [Elsevier]
卷期号:149: 106410-106410 被引量:75
标识
DOI:10.1016/j.envint.2021.106410
摘要

Environmental exposure to toxic metals is an important risk factor to human health. Traditional methods have examined associations between a health endpoint and exposure to heavy metals by either univariate or multiple regression. In the setting of ubiquitous heterogeneous environmental exposures, statistical methods that incorporate mixed exposures are increasingly relevant and may provide new insight into the association between metal exposure and important cardiovascular, renal and respiratory outcomes. The objective of this study was to classify the population of National Health and Nutrition Examination Survey (NHANES) into different exposure subgroups using modern unsupervised clustering methods based on lead, cadmium, mercury, and arsenic measured in urine or whole blood, and to assess the association between the identified exposure groups and twelve important health endpoints. We analyzed a sub-cohort of 9662 subjects participating in the 6 cycles (2003–2004 to 2013–2014) of NHANES study. The urine levels of 3 heavy metals (total arsenic, lead, cadmium) and blood levels of 3 heavy metals (lead, cadmium and mercury) were analyzed using a two-step approach. In the first step, we stratified the population into subgroups using unsupervised clustering (k-medoids) based on levels of metals either in urine or in blood. Then, we examine the association between 12 health endpoints and identified exposure subgroups while controlling for age, sex, race/ethnicity, education, smoking status, BMI, and urinary creatinine. The k-medoids algorithm clustered NHANES population into 2 groups based on either blood or urinary levels of heavy metals. The concentrations of all the three heavy metals were significantly different between the identified groups in blood (p < 2.2e−16) or in urine (p = 0). The group with higher concentrations was defined as the “high-exposure” group, while the group with lower concentrations was defined as “low-exposure” group. Association analysis with health outcomes suggested that the high-exposure group according to either blood or urinary metal levels had significantly higher total mortality (1.63–1.64 times higher, p < 0.0001), mortality caused by malignant neoplasms (2.05–2.62 times higher, p < 0.0002), Gamma-glutamyl transferase (GGT) (1.03–1.05 times higher, p < 0.0001). In addition, the high-exposure group based on blood levels was also significantly associated with SBP, death related to hypertension, heart disease and chronic lower respiratory disease, while the high-exposure group based on urinary concentrations had higher mortality related to nephritis. We proposed an unsupervised clustering method to stratify the population into high- and low-exposure groups based on the co-exposure of heavy metals. The high-exposure groups, characterized by higher metal concentrations, had significant higher GGT, SBP, DBP, and mortality rates suggesting the detrimental effects of exposure to these heavy metals. The stratification of the NHANES population based on exposure patterns provides an informative method to study the impact of metal exposures on health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Venus完成签到 ,获得积分10
38秒前
在水一方应助chenyuns采纳,获得30
45秒前
JACk完成签到 ,获得积分10
53秒前
57秒前
chenyuns发布了新的文献求助30
1分钟前
爱静静应助李伟采纳,获得10
1分钟前
1分钟前
zhangyimg发布了新的文献求助10
1分钟前
2分钟前
郜南烟发布了新的文献求助10
2分钟前
斯文败类应助郜南烟采纳,获得10
2分钟前
思源应助chenyuns采纳,获得20
2分钟前
Akim应助chenyuns采纳,获得20
2分钟前
领导范儿应助圆圆的波仔采纳,获得10
3分钟前
3分钟前
4分钟前
李爱国应助怕孤单的灵寒采纳,获得10
4分钟前
圆圆的波仔完成签到,获得积分10
4分钟前
4分钟前
4分钟前
怕孤单的灵寒完成签到,获得积分20
4分钟前
4分钟前
chenyuns发布了新的文献求助20
4分钟前
4分钟前
CZLhaust发布了新的文献求助10
4分钟前
5分钟前
Sherling发布了新的文献求助10
5分钟前
李爱国应助Sherling采纳,获得10
5分钟前
CZLhaust完成签到,获得积分10
5分钟前
5分钟前
jingjili发布了新的文献求助30
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
5分钟前
郜南烟发布了新的文献求助10
6分钟前
6分钟前
chenyuns发布了新的文献求助20
6分钟前
科目三应助郜南烟采纳,获得10
6分钟前
anthea完成签到 ,获得积分10
6分钟前
方琼燕完成签到 ,获得积分10
7分钟前
852应助郜南烟采纳,获得10
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826621
捐赠科研通 2454573
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527