Stratification of population in NHANES 2009–2014 based on exposure pattern of lead, cadmium, mercury, and arsenic and their association with cardiovascular, renal and respiratory outcomes

全国健康与营养检查调查 环境卫生 Mercury(编程语言) 人口 尿 医学 内科学 化学 有机化学 计算机科学 程序设计语言
作者
Xu Yao,Xu Steven Xu,Yaning Yang,Zhi Zheng Zhu,Zhao Zhu,Fangbiao Tao,Min Yuan
出处
期刊:Environment International [Elsevier BV]
卷期号:149: 106410-106410 被引量:75
标识
DOI:10.1016/j.envint.2021.106410
摘要

Environmental exposure to toxic metals is an important risk factor to human health. Traditional methods have examined associations between a health endpoint and exposure to heavy metals by either univariate or multiple regression. In the setting of ubiquitous heterogeneous environmental exposures, statistical methods that incorporate mixed exposures are increasingly relevant and may provide new insight into the association between metal exposure and important cardiovascular, renal and respiratory outcomes. The objective of this study was to classify the population of National Health and Nutrition Examination Survey (NHANES) into different exposure subgroups using modern unsupervised clustering methods based on lead, cadmium, mercury, and arsenic measured in urine or whole blood, and to assess the association between the identified exposure groups and twelve important health endpoints. We analyzed a sub-cohort of 9662 subjects participating in the 6 cycles (2003–2004 to 2013–2014) of NHANES study. The urine levels of 3 heavy metals (total arsenic, lead, cadmium) and blood levels of 3 heavy metals (lead, cadmium and mercury) were analyzed using a two-step approach. In the first step, we stratified the population into subgroups using unsupervised clustering (k-medoids) based on levels of metals either in urine or in blood. Then, we examine the association between 12 health endpoints and identified exposure subgroups while controlling for age, sex, race/ethnicity, education, smoking status, BMI, and urinary creatinine. The k-medoids algorithm clustered NHANES population into 2 groups based on either blood or urinary levels of heavy metals. The concentrations of all the three heavy metals were significantly different between the identified groups in blood (p < 2.2e−16) or in urine (p = 0). The group with higher concentrations was defined as the “high-exposure” group, while the group with lower concentrations was defined as “low-exposure” group. Association analysis with health outcomes suggested that the high-exposure group according to either blood or urinary metal levels had significantly higher total mortality (1.63–1.64 times higher, p < 0.0001), mortality caused by malignant neoplasms (2.05–2.62 times higher, p < 0.0002), Gamma-glutamyl transferase (GGT) (1.03–1.05 times higher, p < 0.0001). In addition, the high-exposure group based on blood levels was also significantly associated with SBP, death related to hypertension, heart disease and chronic lower respiratory disease, while the high-exposure group based on urinary concentrations had higher mortality related to nephritis. We proposed an unsupervised clustering method to stratify the population into high- and low-exposure groups based on the co-exposure of heavy metals. The high-exposure groups, characterized by higher metal concentrations, had significant higher GGT, SBP, DBP, and mortality rates suggesting the detrimental effects of exposure to these heavy metals. The stratification of the NHANES population based on exposure patterns provides an informative method to study the impact of metal exposures on health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
Ning完成签到,获得积分10
4秒前
图图完成签到,获得积分10
4秒前
勤奋的灯完成签到 ,获得积分10
4秒前
ludong_0完成签到,获得积分10
4秒前
Asumita完成签到,获得积分10
5秒前
双青豆完成签到 ,获得积分10
5秒前
7秒前
fxy完成签到 ,获得积分10
8秒前
合适的幻然完成签到,获得积分10
8秒前
沐雨汐完成签到,获得积分10
10秒前
12秒前
13秒前
jiayoujijin完成签到 ,获得积分10
13秒前
淡然思卉完成签到,获得积分10
14秒前
争当科研巨匠完成签到,获得积分10
14秒前
英姑应助认真的刺猬采纳,获得10
21秒前
好大一只小坏蛋完成签到,获得积分20
21秒前
站走跑完成签到 ,获得积分10
24秒前
步步高完成签到,获得积分10
26秒前
无私的雪瑶完成签到 ,获得积分10
26秒前
小杨完成签到,获得积分20
27秒前
小花完成签到 ,获得积分10
32秒前
宁夕完成签到 ,获得积分10
36秒前
西宁完成签到,获得积分10
36秒前
拼搏的羊青完成签到 ,获得积分10
37秒前
科目三应助asd113采纳,获得10
37秒前
deng203完成签到 ,获得积分20
39秒前
40秒前
时米米米完成签到,获得积分10
40秒前
浅浅完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
49秒前
帅气的藏鸟完成签到,获得积分10
53秒前
加油完成签到 ,获得积分10
54秒前
健康的宛菡完成签到 ,获得积分10
55秒前
橙果果发布了新的文献求助20
55秒前
晚晚完成签到,获得积分10
56秒前
56秒前
听闻韬声依旧完成签到 ,获得积分10
56秒前
ZHZ完成签到,获得积分10
57秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022