Stratification of population in NHANES 2009–2014 based on exposure pattern of lead, cadmium, mercury, and arsenic and their association with cardiovascular, renal and respiratory outcomes

全国健康与营养检查调查 环境卫生 Mercury(编程语言) 人口 尿 医学 内科学 化学 计算机科学 有机化学 程序设计语言
作者
Xu Yao,Xu Steven Xu,Yaning Yang,Zhi Zheng Zhu,Zhao Zhu,Fangbiao Tao,Min Yuan
出处
期刊:Environment International [Elsevier BV]
卷期号:149: 106410-106410 被引量:75
标识
DOI:10.1016/j.envint.2021.106410
摘要

Environmental exposure to toxic metals is an important risk factor to human health. Traditional methods have examined associations between a health endpoint and exposure to heavy metals by either univariate or multiple regression. In the setting of ubiquitous heterogeneous environmental exposures, statistical methods that incorporate mixed exposures are increasingly relevant and may provide new insight into the association between metal exposure and important cardiovascular, renal and respiratory outcomes. The objective of this study was to classify the population of National Health and Nutrition Examination Survey (NHANES) into different exposure subgroups using modern unsupervised clustering methods based on lead, cadmium, mercury, and arsenic measured in urine or whole blood, and to assess the association between the identified exposure groups and twelve important health endpoints. We analyzed a sub-cohort of 9662 subjects participating in the 6 cycles (2003–2004 to 2013–2014) of NHANES study. The urine levels of 3 heavy metals (total arsenic, lead, cadmium) and blood levels of 3 heavy metals (lead, cadmium and mercury) were analyzed using a two-step approach. In the first step, we stratified the population into subgroups using unsupervised clustering (k-medoids) based on levels of metals either in urine or in blood. Then, we examine the association between 12 health endpoints and identified exposure subgroups while controlling for age, sex, race/ethnicity, education, smoking status, BMI, and urinary creatinine. The k-medoids algorithm clustered NHANES population into 2 groups based on either blood or urinary levels of heavy metals. The concentrations of all the three heavy metals were significantly different between the identified groups in blood (p < 2.2e−16) or in urine (p = 0). The group with higher concentrations was defined as the “high-exposure” group, while the group with lower concentrations was defined as “low-exposure” group. Association analysis with health outcomes suggested that the high-exposure group according to either blood or urinary metal levels had significantly higher total mortality (1.63–1.64 times higher, p < 0.0001), mortality caused by malignant neoplasms (2.05–2.62 times higher, p < 0.0002), Gamma-glutamyl transferase (GGT) (1.03–1.05 times higher, p < 0.0001). In addition, the high-exposure group based on blood levels was also significantly associated with SBP, death related to hypertension, heart disease and chronic lower respiratory disease, while the high-exposure group based on urinary concentrations had higher mortality related to nephritis. We proposed an unsupervised clustering method to stratify the population into high- and low-exposure groups based on the co-exposure of heavy metals. The high-exposure groups, characterized by higher metal concentrations, had significant higher GGT, SBP, DBP, and mortality rates suggesting the detrimental effects of exposure to these heavy metals. The stratification of the NHANES population based on exposure patterns provides an informative method to study the impact of metal exposures on health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁玲玲完成签到 ,获得积分10
2秒前
4秒前
zombleq完成签到 ,获得积分10
5秒前
牛马完成签到,获得积分10
5秒前
萧萧发布了新的文献求助30
10秒前
17秒前
c123完成签到 ,获得积分10
17秒前
文与武完成签到 ,获得积分10
19秒前
19秒前
1993963发布了新的文献求助10
23秒前
kk2024应助科研通管家采纳,获得20
26秒前
Ava应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
喝酸奶不舔盖完成签到 ,获得积分10
34秒前
热心的飞风完成签到 ,获得积分10
48秒前
海英完成签到,获得积分10
48秒前
bellapp完成签到 ,获得积分10
48秒前
顺顺利利毕业完成签到 ,获得积分10
51秒前
虚拟的水之完成签到 ,获得积分10
53秒前
科研通AI2S应助U9A采纳,获得10
55秒前
丘比特应助晨许沫光采纳,获得10
56秒前
心想事成完成签到 ,获得积分10
57秒前
flyingpig完成签到,获得积分10
59秒前
秋纳瑞完成签到 ,获得积分10
1分钟前
master-f完成签到 ,获得积分10
1分钟前
1分钟前
挪威的森林完成签到,获得积分10
1分钟前
隐形的非笑完成签到 ,获得积分10
1分钟前
科研通AI5应助大力听芹采纳,获得10
1分钟前
悠雯完成签到 ,获得积分10
1分钟前
传奇3应助Emily采纳,获得10
1分钟前
三脸茫然完成签到 ,获得积分10
1分钟前
1分钟前
端庄半凡完成签到 ,获得积分10
1分钟前
1分钟前
song完成签到 ,获得积分10
1分钟前
1分钟前
spring完成签到,获得积分10
1分钟前
Emily发布了新的文献求助10
1分钟前
贰鸟应助悠雯采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167368
捐赠科研通 3248732
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664