Stratification of population in NHANES 2009–2014 based on exposure pattern of lead, cadmium, mercury, and arsenic and their association with cardiovascular, renal and respiratory outcomes

全国健康与营养检查调查 环境卫生 Mercury(编程语言) 人口 尿 医学 内科学 化学 计算机科学 有机化学 程序设计语言
作者
Xu Yao,Xu Steven Xu,Yaning Yang,Zhi Zheng Zhu,Zhao Zhu,Fangbiao Tao,Min Yuan
出处
期刊:Environment International [Elsevier BV]
卷期号:149: 106410-106410 被引量:75
标识
DOI:10.1016/j.envint.2021.106410
摘要

Environmental exposure to toxic metals is an important risk factor to human health. Traditional methods have examined associations between a health endpoint and exposure to heavy metals by either univariate or multiple regression. In the setting of ubiquitous heterogeneous environmental exposures, statistical methods that incorporate mixed exposures are increasingly relevant and may provide new insight into the association between metal exposure and important cardiovascular, renal and respiratory outcomes. The objective of this study was to classify the population of National Health and Nutrition Examination Survey (NHANES) into different exposure subgroups using modern unsupervised clustering methods based on lead, cadmium, mercury, and arsenic measured in urine or whole blood, and to assess the association between the identified exposure groups and twelve important health endpoints. We analyzed a sub-cohort of 9662 subjects participating in the 6 cycles (2003–2004 to 2013–2014) of NHANES study. The urine levels of 3 heavy metals (total arsenic, lead, cadmium) and blood levels of 3 heavy metals (lead, cadmium and mercury) were analyzed using a two-step approach. In the first step, we stratified the population into subgroups using unsupervised clustering (k-medoids) based on levels of metals either in urine or in blood. Then, we examine the association between 12 health endpoints and identified exposure subgroups while controlling for age, sex, race/ethnicity, education, smoking status, BMI, and urinary creatinine. The k-medoids algorithm clustered NHANES population into 2 groups based on either blood or urinary levels of heavy metals. The concentrations of all the three heavy metals were significantly different between the identified groups in blood (p < 2.2e−16) or in urine (p = 0). The group with higher concentrations was defined as the “high-exposure” group, while the group with lower concentrations was defined as “low-exposure” group. Association analysis with health outcomes suggested that the high-exposure group according to either blood or urinary metal levels had significantly higher total mortality (1.63–1.64 times higher, p < 0.0001), mortality caused by malignant neoplasms (2.05–2.62 times higher, p < 0.0002), Gamma-glutamyl transferase (GGT) (1.03–1.05 times higher, p < 0.0001). In addition, the high-exposure group based on blood levels was also significantly associated with SBP, death related to hypertension, heart disease and chronic lower respiratory disease, while the high-exposure group based on urinary concentrations had higher mortality related to nephritis. We proposed an unsupervised clustering method to stratify the population into high- and low-exposure groups based on the co-exposure of heavy metals. The high-exposure groups, characterized by higher metal concentrations, had significant higher GGT, SBP, DBP, and mortality rates suggesting the detrimental effects of exposure to these heavy metals. The stratification of the NHANES population based on exposure patterns provides an informative method to study the impact of metal exposures on health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小竹笋完成签到,获得积分10
刚刚
刚刚
whn发布了新的文献求助10
1秒前
SYLH应助unite 小丘采纳,获得10
1秒前
Emily应助ling采纳,获得10
1秒前
是真的发布了新的文献求助10
2秒前
gfi关注了科研通微信公众号
2秒前
2秒前
帅气书文完成签到,获得积分10
3秒前
无语的弱发布了新的文献求助10
4秒前
gk发布了新的文献求助10
5秒前
lcj2022完成签到,获得积分20
6秒前
WANGCHU发布了新的文献求助10
6秒前
7秒前
7秒前
狮子座完成签到,获得积分10
7秒前
凌儿响叮当完成签到 ,获得积分10
9秒前
lmgj完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
喻嘟嘟发布了新的文献求助10
10秒前
薯愿完成签到,获得积分10
11秒前
11秒前
11秒前
XLL小绿绿发布了新的文献求助10
12秒前
樱悼柳雪发布了新的文献求助10
13秒前
13秒前
流年发布了新的文献求助10
13秒前
风趣的靖雁完成签到 ,获得积分10
14秒前
14秒前
易萧完成签到 ,获得积分10
15秒前
FrankJeffison发布了新的文献求助10
16秒前
生椰拿铁完成签到,获得积分10
16秒前
xiaogui完成签到,获得积分10
16秒前
琦琦发布了新的文献求助10
16秒前
16秒前
HY完成签到,获得积分10
17秒前
隐形觅翠发布了新的文献求助10
17秒前
奶黄包完成签到 ,获得积分10
17秒前
科研通AI2S应助书文混四方采纳,获得10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130