钝化
钙钛矿(结构)
卤化物
发光二极管
材料科学
光电子学
二极管
亮度
锂(药物)
化学
无机化学
纳米技术
光学
图层(电子)
结晶学
医学
物理
内分泌学
作者
Wu Tian,Junnan Li,Yatao Zou,Hao Xu,Kaichuan Wen,Shanshan Wan,Sai Bai,Tao Song,John A. McLeod,Steffen Duhm,Feng Gao,Baoquan Sun
标识
DOI:10.1002/anie.201914000
摘要
Abstract Defect passivation has been demonstrated to be effective in improving the radiative recombination of charge carriers in perovskites, and consequently, the device performance of the resultant perovskite light‐emitting diodes (LEDs). State‐of‐the‐art useful passivation agents in perovskite LEDs are mostly organic chelating molecules that, however, simultaneously sacrifice the charge‐transport properties and thermal stability of the resultant perovskite emissive layers, thereby deteriorating performance, and especially the operational stability of the devices. We demonstrate that lithium halides can efficiently passivate the defects generated by halide vacancies and reduce trap state density, thereby suppressing ion migration in perovskite films. Efficient green perovskite LEDs based on all‐inorganic CsPbBr 3 perovskite with a peak external quantum efficiency of 16.2 %, as well as a high maximum brightness of 50 270 cd m −2 , are achieved. Moreover, the device shows decent stability even under a brightness of 10 4 cd m −2 . We highlight the universal applicability of defect passivation using lithium halides, which enabled us to improve the efficiency of blue and red perovskite LEDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI