聚乙烯
DLVO理论
聚苯乙烯
材料科学
离子强度
胶体
化学
纳米尺度
聚合物
化学工程
复合材料
纳米技术
有机化学
水溶液
工程类
作者
Mehnaz Shams,Iftaykhairul Alam,Indranil Chowdhury
出处
期刊:Water Research
[Elsevier]
日期:2019-12-19
卷期号:171: 115401-115401
被引量:133
标识
DOI:10.1016/j.watres.2019.115401
摘要
The widespread use and release of plastics in nature have raised global concerns about their impact on public health and the environment. While much research has been conducted on macro- and micro-sized plastics, the fate of nanoscale plastics remains unexplored. In this study, the aggregation kinetics and stability of polyethylene and polystyrene nanoscale plastics were investigated over a wide range of aquatic chemistries (pH, salt types (NaCl, CaCl2, MgCl2), ionic strength) relevant to the natural environment. Results showed that salt types and ionic strength had significant effects on the stability of both polyethylene and polystyrene nanoscale plastics, while pH had none. Aggregation and stability of both polyethylene and polystyrene nanoscale plastics in the aquatic environment followed colloidal theory (DLVO theory and Schulze-Hardy rule), similar to other colloidal particles. The critical coagulation concentration (CCC) values of polyethylene nanoscale plastics were lower for CaCl2 (0.1 mM) compared to NaCl (80 mM) and MgCl2 (3 mM). Similarly, CCC values of polystyrene nanospheres were 10 mM for CaCl2, 800 mM for NaCl and 25 mM for MgCl2. It implies that CaCl2 destabilized both polyethylene and polystyrene nanoscale plastics more aggressively than NaCl and MgCl2. Moreover, polystyrene nanospheres are more stable in the aquatic environment than polyethylene nanoscale plastics. However, natural organic matter improved the stability of polyethylene nanoscale plastics in water primarily due to steric repulsion, increasing CCC values to 0.4 mM, 120 mM and 8 mM for CaCl2, NaCl and MgCl2 respectively. Stability studies with various water conditions demonstrated that polyethylene nanoscale plastics will be fairly stable in the natural surface waters. Conversely, synthetic surface water, wastewater, seawater and groundwater rapidly destabilized polyethylene nanoscale plastics. Overall, our findings indicate that significant aqueous transport of nanoscale plastics will be possible in natural surface waters.
科研通智能强力驱动
Strongly Powered by AbleSci AI