[DL] A Survey of FPGA-based Neural Network Inference Accelerators

计算机科学 现场可编程门阵列 推论 人工神经网络 计算 软件 计算机工程 人工智能 嵌入式系统 计算机硬件 机器学习 计算机体系结构 硬件加速 算法 程序设计语言
作者
Kaiyuan Guo,Shulin Zeng,Jincheng Yu,Yu Wang,Huazhong Yang
出处
期刊:ACM Transactions on Reconfigurable Technology and Systems [Association for Computing Machinery]
卷期号:12 (1): 1-26 被引量:200
标识
DOI:10.1145/3289185
摘要

Recent research on neural networks has shown a significant advantage in machine learning over traditional algorithms based on handcrafted features and models. Neural networks are now widely adopted in regions like image, speech, and video recognition. But the high computation and storage complexity of neural network inference poses great difficulty on its application. It is difficult for CPU platforms to offer enough computation capacity. GPU platforms are the first choice for neural network processes because of its high computation capacity and easy-to-use development frameworks. However, FPGA-based neural network inference accelerator is becoming a research topic. With specifically designed hardware, FPGA is the next possible solution to surpass GPU in speed and energy efficiency. Various FPGA-based accelerator designs have been proposed with software and hardware optimization techniques to achieve high speed and energy efficiency. In this article, we give an overview of previous work on neural network inference accelerators based on FPGA and summarize the main techniques used. An investigation from software to hardware, from circuit level to system level is carried out to complete analysis of FPGA-based neural network inference accelerator design and serves as a guide to future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
zachatyTS关注了科研通微信公众号
3秒前
serpiero完成签到,获得积分10
3秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
盒子应助科研通管家采纳,获得10
5秒前
5秒前
Yziii应助科研通管家采纳,获得20
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
l玖应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
zyluoluo发布了新的文献求助10
6秒前
huapeng发布了新的文献求助10
8秒前
李健的小迷弟应助cc采纳,获得10
8秒前
cc小木屋应助乐观的镜子采纳,获得10
9秒前
10秒前
鱼鳞飞飞发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
小马甲应助111采纳,获得10
13秒前
14秒前
ding应助潇洒小甜瓜采纳,获得10
14秒前
ETO完成签到,获得积分10
14秒前
小冯发布了新的文献求助30
16秒前
fifteen发布了新的文献求助10
16秒前
17秒前
17秒前
ETO发布了新的文献求助10
18秒前
19秒前
19秒前
21秒前
健忘的谷冬完成签到,获得积分10
22秒前
彳亍1117应助Drorme采纳,获得10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160857
求助须知:如何正确求助?哪些是违规求助? 2812058
关于积分的说明 7894301
捐赠科研通 2470980
什么是DOI,文献DOI怎么找? 1315808
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602068