A Data-Driven Attack Detection Approach for DC Servo Motor Systems Based on Mixed Optimization Strategy

稳健性(进化) 残余物 计算机科学 灵敏度(控制系统) 加权 噪音(视频) 发电机(电路理论) 算法 人工智能 数据挖掘 工程类 电子工程 物理 生物化学 化学 功率(物理) 量子力学 声学 图像(数学) 基因
作者
Xiaojian Li,Xin-Yu Shen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (9): 5806-5813 被引量:87
标识
DOI:10.1109/tii.2019.2960616
摘要

This article is concerned with the data-driven attack detection problem for cyber-physical systems with the actuator attacks and measurement noise. In most of existing data-driven detection methods, H index is used to characterize the sensitivity performance. It is well-known that compared with the H index, H_ index can significantly improve the diagnostic performance. However, the detection system design based on the H_/H mixed optimization technique has not been solved within the data-driven framework. In this article, a residual generator is constructed from the available input-output (I/O) data. H and H_ indices are defined from the viewpoint of time-domain to characterize the robustness of residual generator against measurement noise and sensitivity to attack signals, respectively. In particular, a novel weighting system, which is expressed as an I/O model, is designed to transform the H_ performance into an H constraint, and the detection system design problem based on H_/H mixed optimization technique is finally formulated into a constraint-type optimization one, which can be solved by the classical Lagrange multiplier method. Also, the proposed detection method is applied to a networked dc servo motor system to verify its advantages and effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
奶龙发布了新的文献求助10
2秒前
奋斗朋友完成签到 ,获得积分10
2秒前
爆米花应助崔老师采纳,获得30
2秒前
Criminology34应助hudiefeifei306采纳,获得10
3秒前
冷静的高烽完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
123发布了新的文献求助10
4秒前
航的完成签到,获得积分10
4秒前
臣静的猫完成签到,获得积分10
4秒前
Jasper应助嘎嘎采纳,获得10
5秒前
放荡不羁完成签到,获得积分10
5秒前
5秒前
5秒前
纯真黄蜂发布了新的文献求助10
5秒前
张玉杰发布了新的文献求助10
6秒前
33完成签到,获得积分10
6秒前
夏日的极光完成签到,获得积分10
6秒前
6秒前
无私鹏涛完成签到,获得积分10
6秒前
Lyu完成签到,获得积分10
6秒前
Julie完成签到 ,获得积分10
7秒前
zxcv完成签到 ,获得积分10
7秒前
8秒前
Ashe发布了新的文献求助10
8秒前
8秒前
搜集达人应助海川采纳,获得10
9秒前
9秒前
9秒前
纪云海完成签到,获得积分10
9秒前
horizon完成签到,获得积分10
9秒前
JamesPei应助Balance Man采纳,获得10
10秒前
Wendy完成签到,获得积分10
10秒前
jade257发布了新的文献求助40
10秒前
Hello应助科研通管家采纳,获得10
10秒前
彭于彦祖应助科研通管家采纳,获得30
10秒前
核桃应助科研通管家采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707560
求助须知:如何正确求助?哪些是违规求助? 5184344
关于积分的说明 15250589
捐赠科研通 4860809
什么是DOI,文献DOI怎么找? 2608925
邀请新用户注册赠送积分活动 1559749
关于科研通互助平台的介绍 1517536