A Data-Driven Attack Detection Approach for DC Servo Motor Systems Based on Mixed Optimization Strategy

稳健性(进化) 残余物 计算机科学 灵敏度(控制系统) 加权 噪音(视频) 发电机(电路理论) 算法 人工智能 数据挖掘 工程类 电子工程 物理 量子力学 生物化学 基因 图像(数学) 声学 功率(物理) 化学
作者
Xiaojian Li,Xin-Yu Shen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (9): 5806-5813 被引量:87
标识
DOI:10.1109/tii.2019.2960616
摘要

This article is concerned with the data-driven attack detection problem for cyber-physical systems with the actuator attacks and measurement noise. In most of existing data-driven detection methods, H index is used to characterize the sensitivity performance. It is well-known that compared with the H index, H_ index can significantly improve the diagnostic performance. However, the detection system design based on the H_/H mixed optimization technique has not been solved within the data-driven framework. In this article, a residual generator is constructed from the available input-output (I/O) data. H and H_ indices are defined from the viewpoint of time-domain to characterize the robustness of residual generator against measurement noise and sensitivity to attack signals, respectively. In particular, a novel weighting system, which is expressed as an I/O model, is designed to transform the H_ performance into an H constraint, and the detection system design problem based on H_/H mixed optimization technique is finally formulated into a constraint-type optimization one, which can be solved by the classical Lagrange multiplier method. Also, the proposed detection method is applied to a networked dc servo motor system to verify its advantages and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MOF@COF发布了新的文献求助10
2秒前
领导范儿应助360071717采纳,获得10
5秒前
6秒前
烩面大师完成签到,获得积分10
7秒前
baili123完成签到,获得积分10
7秒前
8秒前
爱听歌小兔子完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
uu完成签到,获得积分10
12秒前
coolkid发布了新的文献求助10
13秒前
狂野绿竹发布了新的文献求助10
14秒前
xulu完成签到,获得积分20
14秒前
香蕉觅云应助哈米伯伯采纳,获得10
15秒前
15秒前
顾矜应助嘟嘟嘟采纳,获得10
15秒前
希望天下0贩的0应助小朱采纳,获得10
16秒前
hujin应助给一采纳,获得20
18秒前
完美采梦完成签到 ,获得积分10
19秒前
19秒前
20秒前
360071717完成签到,获得积分10
20秒前
狂野绿竹完成签到,获得积分10
20秒前
于陶晶发布了新的文献求助10
21秒前
xulu发布了新的文献求助30
22秒前
22秒前
开朗便当完成签到,获得积分10
23秒前
24秒前
KK完成签到,获得积分10
26秒前
脑洞疼应助hqq2312采纳,获得10
26秒前
29秒前
暴富解忧发布了新的文献求助10
29秒前
文光完成签到,获得积分10
30秒前
今后应助corner采纳,获得10
30秒前
祺王862完成签到,获得积分10
32秒前
32秒前
想做哥哥的伞钯完成签到,获得积分10
33秒前
34秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163904
求助须知:如何正确求助?哪些是违规求助? 2814758
关于积分的说明 7906420
捐赠科研通 2474340
什么是DOI,文献DOI怎么找? 1317459
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198