Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm

计算机科学 算法 计算智能 稳健性(进化) 帝国主义竞争算法 水准点(测量) 群体智能 最优化问题 进化算法 连续优化 数学优化 人工智能 元启发式 趋同(经济学) 元优化 多群优化 粒子群优化 数学 基因 生物化学 经济增长 经济 化学 大地测量学 地理
作者
Ali Wagdy Mohamed,Anas A. Hadi,Ali Khater Mohamed
出处
期刊:International Journal of Machine Learning and Cybernetics [Springer Nature]
卷期号:11 (7): 1501-1529 被引量:270
标识
DOI:10.1007/s13042-019-01053-x
摘要

This paper proposes a novel nature-inspired algorithm called Gaining Sharing Knowledge based Algorithm (GSK) for solving optimization problems over continuous space. The GSK algorithm mimics the process of gaining and sharing knowledge during the human life span. It is based on two vital stages, junior gaining and sharing phase and senior gaining and sharing phase. The present work mathematically models these two phases to achieve the process of optimization. In order to verify and analyze the performance of GSK, numerical experiments on a set of 30 test problems from the CEC2017 benchmark for 10, 30, 50 and 100 dimensions. Besides, the GSK algorithm has been applied to solve the set of real world optimization problems proposed for the IEEE-CEC2011 evolutionary algorithm competition. A comparison with 10 state-of-the-art and recent metaheuristic algorithms are executed. Experimental results indicate that in terms of robustness, convergence and quality of the solution obtained, GSK is significantly better than, or at least comparable to state-of-the-art approaches with outstanding performance in solving optimization problems especially with high dimensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
耶耶发布了新的文献求助10
2秒前
2秒前
2秒前
华仔应助zz采纳,获得10
2秒前
3秒前
霸气的惜天应助Singularity采纳,获得10
3秒前
gab发布了新的文献求助10
3秒前
daodao发布了新的文献求助10
3秒前
3秒前
good_boy完成签到,获得积分10
5秒前
5秒前
8秒前
ania发布了新的文献求助10
8秒前
Elaine发布了新的文献求助10
9秒前
MROU应助li采纳,获得30
9秒前
10秒前
10秒前
11秒前
12秒前
12秒前
CodeCraft应助科研狗仔队采纳,获得10
13秒前
14秒前
乐乐应助Foremelon采纳,获得10
14秒前
毛豆应助蓝尽量采纳,获得10
15秒前
科目三应助啊哦采纳,获得30
15秒前
zz发布了新的文献求助10
15秒前
15秒前
舒适路人完成签到,获得积分10
15秒前
小旋风发布了新的文献求助10
16秒前
叮当发布了新的文献求助30
16秒前
慕青应助2011509382采纳,获得30
17秒前
yatou5651应助大意的梦山采纳,获得30
17秒前
毛豆应助zzuwxj采纳,获得10
17秒前
lxy发布了新的文献求助30
17秒前
Chai发布了新的文献求助10
17秒前
嘉心糖应助加菲丰丰采纳,获得20
18秒前
123456hhh完成签到,获得积分20
19秒前
19秒前
yang关注了科研通微信公众号
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308756
求助须知:如何正确求助?哪些是违规求助? 2942097
关于积分的说明 8507396
捐赠科研通 2617067
什么是DOI,文献DOI怎么找? 1429972
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186