Untargeted and targeted metabolomics strategy for the classification of strong aroma-type baijiu (liquor) according to geographical origin using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry

芳香 代谢组学 色谱法 质谱法 化学 风味 萃取(化学) 飞行时间质谱 气相色谱-质谱法 气相色谱法 食品科学 离子 有机化学 电离
作者
Xuebo Song,Si Jing,Lin Zhu,Chenfei Ma,Tao Song,Jihong Wu,Qiangzhong Zhao,Fuping Zheng,Mouming Zhao,Feng Chen
出处
期刊:Food Chemistry [Elsevier]
卷期号:314: 126098-126098 被引量:155
标识
DOI:10.1016/j.foodchem.2019.126098
摘要

A metabolomics strategy was developed to differentiate strong aroma-type baijiu (SAB) (distilled liquor) from the Sichuan basin (SCB) and Yangtze-Huaihe River Basin (YHRB) through liquid–liquid extraction coupled with GC×GC-TOFMS. PCA effectively separated the samples from these two regions. The PLS-DA training model was excellent, with explained variation and predictive capability values of 0.988 and 0.982, respectively. As a result, the model demonstrated its ability to perfectly differentiate all the unknown SAB samples. Twenty-nine potential markers were located by variable importance in projection values, and twenty-four of them were identified and quantitated. Discrimination ability is closely correlated to the characteristic flavor compounds, such as acid, esters, furans, alcohols, sulfides and pyrazine. Most of the marker compounds were less abundant in the SCB samples than in the YHRB samples. The quantitated markers were further processed using hierarchical cluster analysis for targeted analysis, indicating that the markers had great discrimination power to differentiate the SAB samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJK发布了新的文献求助10
刚刚
懒懒大王完成签到,获得积分10
1秒前
寒雨发布了新的文献求助10
1秒前
田様应助罗杰采纳,获得10
2秒前
3秒前
LLLeon0完成签到,获得积分10
3秒前
zy完成签到,获得积分10
4秒前
Jasper应助abcdefg采纳,获得30
4秒前
100发布了新的文献求助10
4秒前
4秒前
4秒前
大力的小熊猫完成签到 ,获得积分10
5秒前
风雨完成签到,获得积分10
5秒前
西番雅发布了新的文献求助10
6秒前
7秒前
隐形曼青应助fengw420采纳,获得10
7秒前
自觉馒头完成签到,获得积分10
8秒前
宜醉宜游宜睡完成签到,获得积分0
8秒前
9秒前
苏夏完成签到 ,获得积分10
9秒前
10秒前
10秒前
Owen完成签到,获得积分10
11秒前
11秒前
爱学习的小白完成签到 ,获得积分10
12秒前
12秒前
罗杰完成签到,获得积分10
13秒前
赘婿应助研友_Ze0vBn采纳,获得10
13秒前
zhu完成签到,获得积分10
14秒前
15秒前
小菜鸡发布了新的文献求助10
15秒前
123123发布了新的文献求助10
16秒前
17秒前
yao发布了新的文献求助10
17秒前
迅速斑马完成签到,获得积分10
18秒前
雪茶发布了新的文献求助20
18秒前
强强嘻嘻发布了新的文献求助10
19秒前
叶子完成签到,获得积分10
19秒前
fengw420发布了新的文献求助10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944898
关于积分的说明 8521939
捐赠科研通 2620639
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650134