Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes

材料科学 成核 电解质 电化学 阴极 纳米晶 化学工程 氟化物 溶解 金属 纳米技术 化学物理 无机化学 电极 物理化学 化学 冶金 工程类 有机化学
作者
Albert W. Xiao,Hyeon Jeong Lee,Isaac Capone,Alex W. Robertson,Tae‐Ung Wi,Jack Fawdon,Samuel Wheeler,Hyun‐Wook Lee,Nicole Grobert,Mauro Pasta
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:19 (6): 644-654 被引量:130
标识
DOI:10.1038/s41563-020-0621-z
摘要

The application of transition metal fluorides as energy-dense cathode materials for lithium ion batteries has been hindered by inadequate understanding of their electrochemical capabilities and limitations. Here, we present an ideal system for mechanistic study through the colloidal synthesis of single-crystalline, monodisperse iron(ii) fluoride nanorods. Near theoretical capacity (570 mA h g−1) and extraordinary cycling stability (>90% capacity retention after 50 cycles at C/20) is achieved solely through the use of an ionic liquid electrolyte (1 m LiFSI/Pyr1,3FSI), which forms a stable solid electrolyte interphase and prevents the fusing of particles. This stability extends over 200 cycles at much higher rates (C/2) and temperatures (50 °C). High-resolution analytical transmission electron microscopy reveals intricate morphological features, lattice orientation relationships and oxidation state changes that comprehensively describe the conversion mechanism. Phase evolution, diffusion kinetics and cell failure are critically influenced by surface-specific reactions. The reversibility of the conversion reaction is governed by topotactic cation diffusion through an invariant lattice of fluoride anions and the nucleation of metallic particles on semicoherent interfaces. This new understanding is used to showcase the inherently high discharge rate capability of FeF2. The application of metal fluorides as cathodes for lithium ion batteries has been hindered by inadequate understanding of their electrochemical capabilities. Reversible conversion reaction in iron fluoride nanocrystals is shown to be due to topotactic cation diffusion and nucleation of metallic particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月下荷花发布了新的文献求助10
刚刚
平凡的书雁完成签到,获得积分10
刚刚
small完成签到,获得积分10
刚刚
研友_n0Qa7Z发布了新的文献求助10
1秒前
元锦程完成签到,获得积分10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得30
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
yuHS发布了新的文献求助10
3秒前
4秒前
fd163c应助yuanying采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得30
4秒前
yar应助科研通管家采纳,获得10
4秒前
英姑应助友好的友绿采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
YifanWang应助shinn采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得30
4秒前
ED应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
一颗东瓜完成签到,获得积分10
5秒前
5秒前
Dimples发布了新的文献求助10
6秒前
元锦程发布了新的文献求助10
6秒前
6秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092