Closed-loop optimization of fast-charging protocols for batteries with machine learning

贝叶斯优化 计算机科学 电池(电) 航程(航空) 钥匙(锁) 过程(计算) 可靠性工程 机器学习 工程类 功率(物理) 计算机安全 量子力学 操作系统 物理 航空航天工程
作者
Peter M. Attia,Aditya Grover,Norman Jin,Kristen Severson,Todor Markov,Yang-Hung Liao,Michael H. Chen,Bryan Cheong,Nicholas Perkins,Zi Yang,Patrick Herring,Muratahan Aykol,Stephen J. Harris,Richard D. Braatz,Stefano Ermon,William C. Chueh
出处
期刊:Nature [Nature Portfolio]
卷期号:578 (7795): 397-402 被引量:776
标识
DOI:10.1038/s41586-020-1994-5
摘要

Simultaneously optimizing many design parameters in time-consuming experiments causes bottlenecks in a broad range of scientific and engineering disciplines1,2. One such example is process and control optimization for lithium-ion batteries during materials selection, cell manufacturing and operation. A typical objective is to maximize battery lifetime; however, conducting even a single experiment to evaluate lifetime can take months to years3–5. Furthermore, both large parameter spaces and high sampling variability3,6,7 necessitate a large number of experiments. Hence, the key challenge is to reduce both the number and the duration of the experiments required. Here we develop and demonstrate a machine learning methodology to efficiently optimize a parameter space specifying the current and voltage profiles of six-step, ten-minute fast-charging protocols for maximizing battery cycle life, which can alleviate range anxiety for electric-vehicle users8,9. We combine two key elements to reduce the optimization cost: an early-prediction model5, which reduces the time per experiment by predicting the final cycle life using data from the first few cycles, and a Bayesian optimization algorithm10,11, which reduces the number of experiments by balancing exploration and exploitation to efficiently probe the parameter space of charging protocols. Using this methodology, we rapidly identify high-cycle-life charging protocols among 224 candidates in 16 days (compared with over 500 days using exhaustive search without early prediction), and subsequently validate the accuracy and efficiency of our optimization approach. Our closed-loop methodology automatically incorporates feedback from past experiments to inform future decisions and can be generalized to other applications in battery design and, more broadly, other scientific domains that involve time-intensive experiments and multi-dimensional design spaces. A closed-loop machine learning methodology of optimizing fast-charging protocols for lithium-ion batteries can identify high-lifetime charging protocols accurately and efficiently, considerably reducing the experimental time compared to simpler approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wdy111应助莉莉卡i采纳,获得20
1秒前
PPP完成签到,获得积分10
2秒前
2秒前
小小铱完成签到,获得积分10
3秒前
马香芦完成签到,获得积分10
3秒前
思源应助饱满懿轩采纳,获得10
3秒前
4秒前
俊逸慕灵完成签到,获得积分10
4秒前
xuxu完成签到 ,获得积分10
4秒前
cm发布了新的文献求助10
5秒前
yeyeming完成签到,获得积分10
5秒前
聚散流沙完成签到,获得积分10
5秒前
搞怪柔完成签到,获得积分10
5秒前
6秒前
脑洞疼应助霸气的保温杯采纳,获得10
6秒前
大模型应助郑历康采纳,获得10
7秒前
奋斗老鼠发布了新的文献求助10
8秒前
暴躁汉堡完成签到,获得积分10
8秒前
8秒前
木木应助宁阿霜采纳,获得10
8秒前
Tiffany发布了新的文献求助10
9秒前
顾矜应助小yang采纳,获得10
9秒前
万能图书馆应助xie采纳,获得10
10秒前
小樊同学发布了新的文献求助10
10秒前
Dee发布了新的文献求助10
10秒前
今后应助哈哈哈采纳,获得10
11秒前
11秒前
ttyhtg完成签到,获得积分10
11秒前
12秒前
啦啦啦发布了新的文献求助10
12秒前
12秒前
zzz完成签到,获得积分10
12秒前
13秒前
哭泣的麦当劳完成签到 ,获得积分10
13秒前
香蕉觅云应助磊磊猪采纳,获得10
13秒前
左左完成签到 ,获得积分10
13秒前
13秒前
自然乌龟完成签到,获得积分10
15秒前
珠小白完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582