Closed-loop optimization of fast-charging protocols for batteries with machine learning

贝叶斯优化 计算机科学 电池(电) 航程(航空) 钥匙(锁) 过程(计算) 可靠性工程 机器学习 工程类 功率(物理) 计算机安全 量子力学 操作系统 物理 航空航天工程
作者
Peter M. Attia,Aditya Grover,Norman Jin,Kristen Severson,Todor Markov,Yang-Hung Liao,Michael H. Chen,Bryan Cheong,Nicholas Perkins,Zi Yang,Patrick K. Herring,Muratahan Aykol,Stephen J. Harris,Richard D. Braatz,Stefano Ermon,William C. Chueh
出处
期刊:Nature [Nature Portfolio]
卷期号:578 (7795): 397-402 被引量:802
标识
DOI:10.1038/s41586-020-1994-5
摘要

Simultaneously optimizing many design parameters in time-consuming experiments causes bottlenecks in a broad range of scientific and engineering disciplines1,2. One such example is process and control optimization for lithium-ion batteries during materials selection, cell manufacturing and operation. A typical objective is to maximize battery lifetime; however, conducting even a single experiment to evaluate lifetime can take months to years3–5. Furthermore, both large parameter spaces and high sampling variability3,6,7 necessitate a large number of experiments. Hence, the key challenge is to reduce both the number and the duration of the experiments required. Here we develop and demonstrate a machine learning methodology to efficiently optimize a parameter space specifying the current and voltage profiles of six-step, ten-minute fast-charging protocols for maximizing battery cycle life, which can alleviate range anxiety for electric-vehicle users8,9. We combine two key elements to reduce the optimization cost: an early-prediction model5, which reduces the time per experiment by predicting the final cycle life using data from the first few cycles, and a Bayesian optimization algorithm10,11, which reduces the number of experiments by balancing exploration and exploitation to efficiently probe the parameter space of charging protocols. Using this methodology, we rapidly identify high-cycle-life charging protocols among 224 candidates in 16 days (compared with over 500 days using exhaustive search without early prediction), and subsequently validate the accuracy and efficiency of our optimization approach. Our closed-loop methodology automatically incorporates feedback from past experiments to inform future decisions and can be generalized to other applications in battery design and, more broadly, other scientific domains that involve time-intensive experiments and multi-dimensional design spaces. A closed-loop machine learning methodology of optimizing fast-charging protocols for lithium-ion batteries can identify high-lifetime charging protocols accurately and efficiently, considerably reducing the experimental time compared to simpler approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张磊完成签到,获得积分10
1秒前
优秀扬完成签到,获得积分10
2秒前
Keven完成签到,获得积分10
3秒前
Hugrainbow完成签到,获得积分10
3秒前
郭甜甜完成签到 ,获得积分10
3秒前
如意的灰狼完成签到,获得积分10
3秒前
4秒前
修水县1个科研人完成签到 ,获得积分10
5秒前
复杂尔蓝完成签到,获得积分10
5秒前
gzsy完成签到 ,获得积分10
5秒前
felicia12138完成签到 ,获得积分10
5秒前
tian发布了新的文献求助10
6秒前
weiteman完成签到,获得积分10
6秒前
失眠的向日葵完成签到 ,获得积分10
6秒前
感性的安露完成签到,获得积分0
7秒前
LIN2QI完成签到,获得积分10
7秒前
小张同学完成签到 ,获得积分10
8秒前
嗯啊完成签到,获得积分10
8秒前
肖易应助xiaoyou采纳,获得10
8秒前
贪玩的醉柳完成签到,获得积分10
8秒前
霸气的念云完成签到,获得积分10
9秒前
hymmloveGD完成签到,获得积分10
9秒前
Ava应助weiteman采纳,获得10
10秒前
卿卿完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
许容完成签到,获得积分10
10秒前
婷儿完成签到,获得积分10
11秒前
zsqqqqq完成签到,获得积分10
11秒前
12秒前
狄淇儿完成签到,获得积分10
13秒前
腼腆的梦蕊完成签到 ,获得积分10
13秒前
Athos_1992完成签到,获得积分10
13秒前
13秒前
乐乐应助卿卿采纳,获得10
14秒前
你看起来很好吃完成签到,获得积分10
15秒前
是问完成签到,获得积分10
16秒前
拉拉完成签到,获得积分10
17秒前
闵钰坤完成签到,获得积分20
18秒前
WW完成签到 ,获得积分10
18秒前
年少有你完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365