Closed-loop optimization of fast-charging protocols for batteries with machine learning

贝叶斯优化 计算机科学 电池(电) 航程(航空) 钥匙(锁) 过程(计算) 可靠性工程 机器学习 工程类 功率(物理) 计算机安全 量子力学 操作系统 物理 航空航天工程
作者
Peter M. Attia,Aditya Grover,Norman Jin,Kristen Severson,Todor Markov,Yang-Hung Liao,Michael H. Chen,Bryan Cheong,Nicholas Perkins,Zi Jiang Yang,Patrick Herring,Muratahan Aykol,Stephen J. Harris,Richard D. Braatz,Stefano Ermon,William C. Chueh
出处
期刊:Nature [Springer Nature]
卷期号:578 (7795): 397-402 被引量:630
标识
DOI:10.1038/s41586-020-1994-5
摘要

Simultaneously optimizing many design parameters in time-consuming experiments causes bottlenecks in a broad range of scientific and engineering disciplines1,2. One such example is process and control optimization for lithium-ion batteries during materials selection, cell manufacturing and operation. A typical objective is to maximize battery lifetime; however, conducting even a single experiment to evaluate lifetime can take months to years3–5. Furthermore, both large parameter spaces and high sampling variability3,6,7 necessitate a large number of experiments. Hence, the key challenge is to reduce both the number and the duration of the experiments required. Here we develop and demonstrate a machine learning methodology to efficiently optimize a parameter space specifying the current and voltage profiles of six-step, ten-minute fast-charging protocols for maximizing battery cycle life, which can alleviate range anxiety for electric-vehicle users8,9. We combine two key elements to reduce the optimization cost: an early-prediction model5, which reduces the time per experiment by predicting the final cycle life using data from the first few cycles, and a Bayesian optimization algorithm10,11, which reduces the number of experiments by balancing exploration and exploitation to efficiently probe the parameter space of charging protocols. Using this methodology, we rapidly identify high-cycle-life charging protocols among 224 candidates in 16 days (compared with over 500 days using exhaustive search without early prediction), and subsequently validate the accuracy and efficiency of our optimization approach. Our closed-loop methodology automatically incorporates feedback from past experiments to inform future decisions and can be generalized to other applications in battery design and, more broadly, other scientific domains that involve time-intensive experiments and multi-dimensional design spaces. A closed-loop machine learning methodology of optimizing fast-charging protocols for lithium-ion batteries can identify high-lifetime charging protocols accurately and efficiently, considerably reducing the experimental time compared to simpler approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
求求接收吧完成签到,获得积分10
2秒前
可靠访蕊完成签到 ,获得积分10
2秒前
陈军应助hyx采纳,获得20
2秒前
枝桠发布了新的文献求助10
3秒前
受伤的怀绿完成签到,获得积分10
3秒前
迷路的小牛马完成签到,获得积分10
5秒前
金豆发布了新的文献求助10
6秒前
8秒前
风中傻姑完成签到 ,获得积分10
8秒前
完美世界应助尊敬的胜采纳,获得10
8秒前
我是老大应助sapphire_yy采纳,获得10
11秒前
爆米花应助王小元采纳,获得10
11秒前
第三人称的自己完成签到,获得积分10
11秒前
11秒前
GXY关闭了GXY文献求助
11秒前
12秒前
木子完成签到,获得积分10
12秒前
kaka091完成签到,获得积分10
13秒前
852应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
8R60d8应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得20
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得30
14秒前
8R60d8应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
ZZ完成签到 ,获得积分10
14秒前
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
心随风飞发布了新的文献求助30
14秒前
满_1999完成签到,获得积分10
17秒前
PANYIAO发布了新的文献求助10
17秒前
Barry完成签到,获得积分10
18秒前
银杉完成签到,获得积分10
19秒前
sapphire_yy完成签到,获得积分10
19秒前
witty完成签到,获得积分10
19秒前
桐桐应助ZengQiu采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135113
求助须知:如何正确求助?哪些是违规求助? 2786095
关于积分的说明 7775189
捐赠科研通 2441915
什么是DOI,文献DOI怎么找? 1298256
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600839