核孔
生物
核质
核孔蛋白
细胞生物学
辅活化剂
激活剂(遗传学)
突变体
酿酒酵母
核运输
基因
细胞核
转录因子
遗传学
细胞质
核仁
作者
Tadashi Makio,Richard W. Wozniak
摘要
Nuclear pore complexes (NPCs) control gene expression by regulating the bi-directional exchange of proteins and RNAs between nuclear and cytoplasmic compartments, including access of transcriptional regulators to the nucleoplasm. Here, we show that the yeast (Saccharomyces cerevisiae) nucleoporin Nup170, in addition to binding and silencing subtelomeric genes, supports transcription of genes regulated by the SAGA transcriptional activator complex. Specifically, we show that a lower amount of SAGA complex is bound to target genes in the absence of Nup170. Consistent with this observation, levels of the SAGA complex are decreased in cells lacking Nup170, while those of the SAGA-related SLIK complexes are increased. This change in the ratio of SAGA to SLIK complexes is due to increased nuclear activity of Pep4, a protease responsible for production of the SLIK complex. Further analyses of various nucleoporin mutants revealed that the increased nuclear entry of Pep4 observed in the nup170Δ mutant likely occurs as the consequence of an increase in the sieving limits of the NPC diffusion channel. On the basis of these results, we propose that changes in passive diffusion rates represent a mechanism for regulating SAGA- and SLIK complex-mediated transcriptional events.
科研通智能强力驱动
Strongly Powered by AbleSci AI